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Preface

Energy and environment issues are of paramount importance to achieve the
sustainable development of our society. Alcohol-fuelled direct oxidation fuel
cells (DOFCs), as a clean and highly efficient energy harvesting engine, have
attracted intensive research activities over recent decades. Catalysts are the
heart material that determines the performance of DOFCs. The rapid advances
in electrocatalysts, particularly nano-sized ones, have left current information
available only in scattered journals. To be truly useful to both present and
future researchers in the field, this book is intended to devote an insightful
review of the reaction nature, systematically summarize the recent advances in
nanocatalysts, and convey a more global perspective. Contributions by leading
experts will serve as a central source of reference for the fundamentals and
applications of the electrocatalysts, establishing the state of the art,
disseminating the latest research discoveries, and providing a potential
textbook to senior undergraduate and graduate students.

Chapter 1 provides an informative summary on the electrocatalysis of the
alcohol oxidation reactions and the platinum-based electrocatalysts. Chapters
2-6 deal with the recent advances in both the fundamental understanding and
the material science in DOFCs. Special emphasis is placed on the newly
emerging nanocatalysts developed over the past several years, including the
novel nanostructured electrocatalysts, the gold-leaf-based nanocatalysts, the
palladium-based nanocatalysts, bioelectrocatalysts, and correlation of the
“structure-activity” relationship as well. Based on the discussion, the
challenges and perspectives of the nanocatalysts in alcohol-fuelled DOFCs
are extensively discussed in Chapter 7. In addition to typical alcohol oxidation
reactions, recent developments of nanocatalysts for other fuel (formic acid,
borohydride, sugars, erc.) oxidation reactions are also included in this book.
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The editorial board expresses their appreciation to the contributing authors,
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CHAPTER 1

Electrocatalysis of Alcohol
Oxidation Reactions at Platinum
Group Metals

CLAUDE LAMY** AND CHRISTOPHE COUTANCEAU*?

*Groupe de Recherches du CNRS no. 3339 (PACS), University of
Montpellier, 2, place Eugéne Bataillon, 34095 Montpellier, France;

® Université de Poitiers, [C2MP, UMR CNRS 7285, 4 rue Michel Brunet,
86022, Poitiers cedex, France

*E-mail: Claude.Lamy@iemm.univ-montp2.fr

1.1 Introduction

Electrocatalysis, i.e. the heterogeneous catalysis of electrochemical reactions
occurring at the electrode/electrolyte interface, has mainly concerned
technological investigations related either to energy storage (e.g. water
electrolysis) or to energy conversion (e.g. fuel cells)."> However, except for
the hydrogen electrode, which is now well known, and the oxygen electrode,
which has been extensively studied, other electrodes of practical interest, such
as soluble fuel electrodes, need much more investigation. Among them, alcohol
electrodes are particularly suitable for use in a direct oxidation fuel cell
(DOFC) because of several favourable features, such as a high theoretical
energy density (49 kWh kg ' compared to 33 kWh kg~ ' for molecular
hydrogen) and a great facility of handling.

Moreover, alcohols, which may be produced from the biomass, are very
interesting fuels due to a lot of advantages: high solubility in aqueous
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2 Chapter 1

electrolytes, relatively high reactivity, ease of storage and supply, low toxicity
(except for methanol). They can be directly electro-oxidized in a direct alcohol
fuel cell (DAFC).This explains why many fundamental investigations were
undertaken in the last three decades on the electrochemical oxidation of several
alcohols: methanol,* > ethanol,® ® ethylene glycol.*? glycerol,'” propanol'' and
butanol,''* and also on related compounds: formic acid,'* '® formaldehyde,'’
carbon monoxide,'® ezc. Until now, the most promising and most studied fuels
for application in a DOFC, with the direct oxidation of the organic molecule,
are alcohols such as methanol and ethanol.

However, a lot of electrocatalytic problems still arise due to the relative
complexity of the reaction mechanisms. These include the effect of the nature
of the reaction products, the structure of the adsorbed intermediates, the
nature and structure of the electrode material, the molecular structure of the
organic compounds, the pH and the anions of the supporting electrolyte, and
the role of the water adsorption residues.

Furthermore, the catalyst structure, such as the particle size, the composition
and the degree of alloying, are also of great importance, since most of the alcohol
oxidation reactions are structure sensitive and because it is of great interest to
reduce the platinum group metal loading (either by metal dispersion or by synthesis
of multimetallic catalysts) in order to reduce the cost of the DAFC system. These
topics will be illustrated mainly with results obtained in this laboratory.

1.2 Thermodynamics and Kinetics of Alcohol Oxidation
Reactions

In a DOFC the total electro-oxidation to CO, of an aliphatic oxygenated
compound C.H,O containing one oxygen atom (mono-alcohols, aldehydes,
ketones, ethers, ezc.) involves the participation of water (H,O) or of its adsorbed
residue (OH,45) provided by the cathodic reaction (electro-reduction of dioxygen).

The overall electro-oxidation reaction in acid medium to reject the carbon
dioxide produced can thus be written as follows:

CH,0+(2x—1)H,0->xCO>+nH" +ne” (1.1)

with n = 4x + y — 2. Such an anodic reaction is very complicated from a
kinetics point of view since it involves multielectron transfers and the presence
of different adsorbed intermediates and several reaction products and by-
products. However, from thermodynamic data it is easy to calculate the
reversible anode potential, the cell voltage under standard conditions, the
theoretical energy efficiency and the energy density.

1.2.1 Thermodynamic Data

According to reaction (1.1) the standard Gibbs energy change ~AG,°, allowing
1

calculation of the standard anode potential, E, = — , can be evaluated

from the standard energy of formation AG' of reactant i:
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—AG, =xAGro, —AGe 1,0 —(2x—DAGY o (1.2)

In the cathodic compartment the electro-reduction of oxygen occurs, as
follows:

140, +2H* +2e~ »H,0 (1.3)

with AGzzAGLZO: —237.1 kI mol ™', leading to a standard cathodic
potential, E;:

AG, 237.1x10°

E=E, =——2="""___
2~ 0y 2F  2x96485

=1.229 V vs. SHE (1.4)

where SHE is the standard hydrogen electrode, acting as a reference electrode.
In the fuel cell the electrical balance corresponds to the complete combustion
of the organic compound in the presence of oxygen, as follows:

1 .
C,H,0+(x+ ;—i —3)02xCO, + %HgO (1.5)

. y y .

with AG, =(2x+ 35 — DAG, —AG, =xAGgo, + -EAG{hO—AGg_\_H_rO, leading to
the equilibrium standard cell voltage:
AG, __AGy | AG,

= nFI T F +F=E5"Ei=Ebz_Eélcohol

(1.6)

Then it is possible to evaluate the specific energy W, in kWh kg™ ':

_(—AG)
€ 3600 M

(1.7)

with M the molecular mass of the compound. Knowing the enthalpy change
AH" from thermodynamic data:

y

AH,=(2x
H, (2\+2

1)AH, —AH; =xAHE, + '%AHLzO ~AHL 0 (18)

one may calculate the reversible energy efficiency under standard conditions:

AG
ey = —— 1.
brev = 307 (1.9)

r

For the oxidation of methanol and ethanol, the corresponding equations
are:
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CH30H +H,0—CO,+6H* +6¢~ Eyeon =0.016 V vs. SHE  (1.10)

CH3CH;OH +3H,0-2CO>+ 12H" + 12~ Epo; =0.085 V vs. SHE (1.11)

whereas the electro-reduction reaction of molecular oxygen occurs at the
cathode:

0,+4H" +4e~ ->2H,0 Eo, =1.229 V vs. SHE (1.12)

where E; are the standard electrode potentials vs. SHE.
This corresponds to the overall combustion reaction of alcohols in oxygen:

CH;OH +3/20,-C0; +2H,0 Ey meon=1213V  (1.13)

CH;CH,O0H +30,-2CO0, + 3H,0 Eo pon=1.145V  (L.14)

where the cell voltages are calculated under standard conditions.
For higher alcohols, such as n-propanol, taken as an example, the following
calculations can be made:

C3H;0H +5H,0-3CO, + 18H* +18e ™~ (1.15)

—AG, =3AGeo, —AGe 01— 5AGi0
o : (1.16)
= —3%x394.4+168.4+5%237.1=171 kImol !

AG, 171 x10°
E=——"l= =0.098 V vs. .
1 = 18 O 0.098 V vs. SHE (1.17)

C3H7OH+9/202—>3C02+4H20 (1]8)

AG, =9AG, — AG, =3AGo, +4AGyy o — AGe 1. 0n
: ’ : (1.19)
= —3x394.4—4x237.14+168.4=—1963 kJ mol '

The standard cell voltage is thus:

AG, 1963x10° 237.1x10 171 x 10’

_ ’

E.=——ZL= = -
€T T IRF  18x 96485  2x 96485 18 x 96485 (1.20)
=1.229-0.098=1.131 V
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and the specific energy is:

1963 3
We= 300 g0 =09 kWh kg (1.20a)

The enthalpy change of reaction (1.18) is:

AH; = —3x395.5—4 x 285.8+302.6 = —2027 kJ mol (1.21)

so that the reversible energy efficiency is :

AG. 1963

Similar calculations can be made with many oxygenated fuels, including
polyols (ethylene glycol, glycerol), propargyl alcohol, ethers and polyethers
[dimethyl ether, CH;OCHj;, ethyl methyl ether, CH;O0C,Hs, diethyl
ether, C,HsOC,Hs, dimethoxymethane, (CH30),CH,, trimethoxymethane,
(CH;30);CH, trioxane, (CH>0);].

The energy density of the fuel, W, the cell voltage of the cell at equilibrium,
E’.q. and the reversible energy efficiency of the cell, .., for several alcohols
can be calculated under standard conditions (25 “C, liquid phase). The results
are summarized in Table 1.1.

For all oxygenated compounds listed in Table 1.1, the cell voltage varies
from 1.2 to 1.0 V, which is very similar to that of a hydrogen/oxygen fuel cell
(E"eq = 1.23 V). The energy density varies between half to one of that of
gasoline (10-11 kWh kg "), so these compounds are good alternative fuels to
hydrocarbons. Furthermore, the reversible energy efficiency &, is close to 1,
while that of the H»/O, fuel cell is 0.83 at 25 “C (standard conditions). From
these data, it appears that amongst the mono-alcohols, methanol and ethanol
lead to higher cell voltages and reversible energy efficiency under standard
conditions.

Table 1.1 Thermodynamic data associated with the electrochemical oxida-
tion of some alcohols (under standard conditions).

AG,\lkJ E|IV vs. AG,lkJ W kwh AH,kJ

Fuel mol”" SHE — mol™" E/V kg’ mol™" ¢,

CH;0H -9.3 0.016 —702 1.213  6.09 —726 0.967
C,HsOH —-97.3 0.084 —1325 1.145 8.00 —1367 0.969
C;H,0OH =171 0.098 —1963 1.131 9.09 =2027  0.968
n-C4HoOH —409  0.177 —2436 1.052 9.14 =2676  0.910
CH,OH-CH,OH  —255 0.026 —1160.8 1.203 5.20 —1189 0.976
CH>OH-CHOH- 1 —0.01 —1661.6 1.230 5.02 —1650  0.993

CH,OH




6 Chapter 1
1.2.2 Kinetics Problems

The electro-oxidation of aliphatic oxygenated compounds, even the simplest
one, ie. methanol, involves the transfer of many electrons (n = 6 for
methanol). The reaction mechanism is thus complex, the oxidation reaction
occurring through many successive and parallel paths involving many
adsorbed intermediates and by-products. The oxidation reaction needs a
convenient electrocatalyst to increase the reaction rate and to modify the
reaction pathway in order to reach more rapidly the final step, ie. the
production of carbon dioxide. The relative slowness of the reaction, and the
difficulty to break the C-C bond at low temperatures (25-80 “C), lead to high
anodic overvoltages 7,, which will greatly reduce the operating cell voltage
(Figure 1.1).

Thus, the practical electrical efficiency of a fuel cell is dependent on the
current that is delivered by the cell and is lower than that of the reversible
efficiency due to the irreversibility of the electrochemical reactions involved at
the electrodes. The practical efficiency of a fuel cell can be expressed as follows:

A Hexp X F x E(j) _ nFE, 5 E(j) . N
el —AH (—AH) " E. n

r cq

=gy X g X6 (1.23)

with the cell voltage E(j) = E"cq — (Ina| + [ncl + Re/) at a current density jand R.
the electrolyte and interfacial specific resistances.

From eqn (1.23) it follows that the increase of the practical fuel cell
efficiency can be achieved by increasing the voltage efficiency (e = E()/E )
and the faradic efficiency (¢ = nexp/n), the reversible yield being fixed by the
thermodynamic data.

600 [« R
E(j)=0.7V
o
E 400 -
<
£
e W S AR VO h
Na E(j)=0.3V "5
0.00 E,o(C,H,OH) ~ 1.15V :
0.0 0.5 10 123

Evs. RHE/V

Figure 1.1 Current density (j) vs. electrode potential (E) curves for H, and EtOH
electro-oxidation at different Pt-based catalytic anodes, and oxygen
electro-reduction at a Pt cathode.



