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PREFACE

A great portion of contemporary biological inquiry requires a basic appreciation and knowl-
edge of statistical techniques, as has become apparent to biological researchers, journal editors,
and college curriculum planners. Reflecting the magnificent diversity of scientific endeavors
that can be found within the biological sciences, this book presents a broad collection of
data-analysis techniques, which will address the statistical needs of the majority of biological
investigators.

Now in its third edition, this book has been called upon to fulfill two purposes. First, it
has served as an introductory textbook, assuming no prior knowledge of statistics. Secondly,
it has functioned as a reference work, covering a sufficient variety of concepts and procedures
to satisfy a large portion of the biological disciplines that require statistical analysis, and being
consulted long after formal instruction has ended.

Colleges and universities have long offered a diverse array of introductory statistics
courses, some without emphasis on particular fields in which data might be collected and
some—like those for which this book will be explicitly useful—focusing on statistical methods
of utility to a specific field. Walker (1929: 148, 151-163) reported that, although the teaching
of probability has a much longer history, the first statistics course at a U.S. university or
college probably was at Columbia, in the economics department, in 1880; followed in 1887
by the first in psychology, at Pennsylvania; in 1889 by the first in anthropology, at Clark; in
1897 by the first in biology, at Harvard; in 1898 by the first in mathematics, at Illinois; and in
1900 by the first in education, at Columbia. By the end of the nineteenth century only about a
dozen institutions offered courses dealing with statistical methods, but by 1929 all universities
and most large colleges in the country offered such instruction. Specifically in biology, the
first courses with statistical content were probably those taught by Charles B. Davenport at
Harvard (1887-1899) and at Chicago (1889-1904), and his Statistical Methods in Biological
Variation may have been the first American book focused on statistics (ibid.: 159)

In order to be useful as a reference, as well as to allow for differences in content among
courses for which it might be used, this book contains much more material than would be
included in a one-academic-term course. Therefore, I have been asked to recommend what I
consider the basic topics for an introductory treatment. With no authoritarian intent, I suggest
these book sections as such a core treatment of biostatistical methods, to be augmented by
(or substituted by) others of the instructor’s preference: 1.1-1.4, 2.1-2.4, 3.1, 3.2, 3.4, 4.1,

ix
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4.4-4.6, 6.1-6.4, 7.1-7.6, 8.1-8.5, 8.9, 8.10, 9.1-9.3, 9.5, 10.1-10.4, 10.6, 11.1-11.7. 12.1—
12.7, 14.1, 15.1, 16.1-16.7, 17.1-17.3, 18.1-18.3, 18.9, 19.1-19.4, 21.1, 21.2, 21.4, 2125,
22.1, 22.3, 22.6.

The material in this book requires no previous mathematical competence beyond very
elementary algebra, although the discussions include some topics that appear seldom if at all,
in other general texts. Also, cognizance is taken of the increased use of computer capability
in academic and nonacademic institutions of all sizes. There are statistical procedures that
are of importance but which involve computations so demanding that they practically, if not
actually, preclude noncomputer execution. The principles of some of these are presented with
the assumption that computer programs (software) will perform the laborious computations,
but with the realization that the biologist must enter into the interpretation of the results of
the computer’s calculations. The data in the examples and exercises are largely fictional and
are intended to demonstrate statistical procedures, not biological principles.

A final contribution toward achieving a book with self-sufficiency for most biostatistical
needs is the inclusion of a thorough set of statistical tables, the majority of which are more
extensive than those found in other introductory or advanced texts, and including many not
found in any other texts.

A book of this nature requires and benefits from the assistance of many people. For
the preparation of three editions I have been indebted to the library services of the University
of Illinois (Urbana), Northern Illinois University, and the latter’s collections networks. I also
gratefully acknowledge the cooperation of the computer services at Northern Illinois Univer-
sity, which assisted in running many of the computer programs I prepared to generate some of
the statistical appendix tables. For the tables taken from previously published sources, thanks
are here given for the permission to reprint them; full acknowledgement of each source is
found immediately following the appearance of the reprinted material. Additionally, I am
pleased to recognize the editorial and production staff at Prentice Hall and Electronic Tech-
nical Publishing for their valued professional assistance in transforming my manuscripts into
the published product.

Over many years, my teachers, students, and colleagues have aided in guiding me to
the material that is presented in this volume. Available space precludes mention of all those
providing input and influence to this writing endeavor. However, special recognition must be
made of the late S. Charles Kendeigh, University of Illinois (Urbana), who, through consider-
ate mentorship, first alerted me to the need for quantitative analysis of biological data that led
me to produce the first edition; the late Edward Batschelet, University of Zurich, who, with en-
thusiasm, patience, and kindness, provided me with encouragement and inspiration on statisti-
cal matters throughout the preparation of much of the first two editions; and the ever supportive
and stimulating Arthur W. Ghent, University of Illinois (Urbana), who—from pre-publishing
days through the current book edition—has offered statistical and biological commentary
both enlightening and challenging. This edition benefited substantially from the manuscript
commentary provided by Arthur W. Ghent, Mikel Aickin (Arizona State University), Peter
D. Macdonald (McMaster University), Emilia P. Martins (University of Oregon), Daniel M.
Pavuk (Bowling Green State University), Trevor Price (University of California, San Diego),
and others. Finally, I acknowledge my wife, Carol, for her prolonged patience during the
preparation of the three editions of this book over a period of more than twenty years.

J. H. Z.
DeKalb, Illinois
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INTRODUCTION

Many investigations in the biological sciences are quantitative, with observations con-
sisting of numerical facts called data. (One numerical fact is a datum.) As biological
entities are counted or measured, it becomes apparent that some objective methods are
necessary to aid the investigator in presenting and analyzing research data.

The word “statistics” is derived from the Latin for “state,” indicating the historical
importance of governmental data gathering, which related principally to demographic
information (including census data and “vital statistics’), and often to their use in military
recruitment and tax collecting.*

This term is often encountered as a synonym for “data”: One hears of college
enrollment statistics (how many senior students, how many students from each geographic
location, etc.), statistics of a baseball game (how many runs scored, how many strike-outs,
etc.), labor statistics (numbers of workers unemployed, numbers employed in various
occupations), and so on. Hereafter, this use of the word “statistics” will not appear in this
book. Instead, “statistics” will be used to refer to the analysis and interpretation of data
with a view toward objective evaluation of the reliability of the conclusions based on the
data. Statistics applied to biological problems is simply called biostatistics or, sometimes,
biometry' (the latter term literally meaning “biological measurement”). Although the field
of statistics has roots extending back hundreds of years, its development began in earnest

*Peters (1987: 79) and Walker (1929: 32) attribute the first use of the term “statistics” to a German
professor, Gottfried Achenwall (1719-1772), who used the German word Statistik in 1749, and the first
published use of the English word to John Sinclair (1754-1835) in 1791.

{The term “biometry” apparently was conceived between 1892 and 1901 by Karl Pearson, along with
the name, Biometrika, for the still-important English journal he helped found, and this term was first published
in the inaugural issue of that journal in 1901 (Snedecor, 1954).
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in the late nineteenth century, and a major impetus from early in this development has
been the need to examine biological data.

Before data can be analyzed, they must be collected, and statistical considerations
can aid in the design of experiments and in the setting up of hypotheses to be tested.
Many biologists attempt the analysis of their research data only to find that too few data
were collected to enable reliable conclusions to be drawn, or that much extra effort was
expended in collecting data that cannot be of ready aid in the analysis of the experiment.
Thus, a knowledge of basic statistical principles and procedures is important even before
an experiment is begun.

Once the data have been obtained, we may organize and summarize them in such
a way as to arrive at their orderly presentation. Such procedures are often termed
descriptive statistics. For example, a tabulation might be made of the heights of all
members of a senior English class, indicating an average height for each sex, or for each
age. However, it might be desired to make some generalizations from these data. We
might, for example, wish to make a reasonable estimate of the heights of all seniors in
the university. Or we might wish to conclude whether the males in the university are on
the average taller than the females. The ability to make such generalized conclusions,
inferring characteristics of the whole from characteristics of its parts, lies within the
realm of inferential statistics.

1.1 TyPES OoF BioLoGICAL DATA

A characteristic that may differ from one biological entity to another is termed a variable
(or variate). Different kinds of variables may be encountered by biologists, and it is
desirable to be able to distinguish among them. The classification used here is that
which is standardly employed (Senders, 1958; Siegel, 1956; Stevens, 1946, 1968).

However, slavish adherence to this taxonomy can be misleading (e.g., see Velle-
man and Wilkinson, 1993, and the references cited therein), for not all data fit neatly
into these categories and some may be treated differently depending upon the questions
asked of them.

Data on a Ratio Scale. Consider that the heights of a group of plants constitute a
variable of interest, and perhaps the number of leaves per plant is another variable under
consideration. Thanks to measuring devices at the biologist’s disposal, it is possible to
assign a numerical value to the height of each plant, and counting the leaves allows a
numerical value to be assigned to the number of leaves on each plant. Regardless of
whether the height measurements are recorded in centimeters, inches, or other units, and
regardless of whether the leaves are counted in a number system using base 10 or any
other base, there are two fundamentally important characteristics of these data.

First, there is a constant size interval between any adjacent units on the measure-
ment scale. That is, the difference in height between a 36 cm and a 37 cm plant is the
same as the difference between a 39 cm and a 40 cm plant, and the difference between
eight and ten leaves is equal to the difference between nine and eleven leaves. (This
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may seem simpleminded, but it is very important, as we shall see on examining the other
scales of measurement.)

Second, it is important that there exists a zero point on the measurement scale
and that there is a physical significance to this zero. This enables us to say something
meaningful about the ratio of measurements. We can say that a 30 cm (11.8 in.) tall
plant is half as tall as a 60 cm (23.6 in.) plant, and that a plant with forty-five leaves
has three times as many leaves as a plant with fifteen.

Measurement scales having a constant interval size and a true zero point are said
to be ratio scales of measurement. Besides lengths and numbers of items, ratio scales
include weights (mg, Ib, etc.), volumes (cc, cu ft, etc.), capacities (ml, qt, etc.), rates
(cm/sec, mph, mg/min, etc.), and lengths of time (hr, yr, etc.).

Data on an Interval Scale. Some measurement scales possess a constant interval
size but not a true zero; they are called interval scales. An outstanding example is that
of the two common temperature scales: Celsius (C) and Fahrenheit (F). We can see that
the same difference exists between 20°C (68°F) and 25°C (77°F) as between 5°C (41°F)
and 10°C (50°F); i.e., the measurement scale is composed of equal-sized intervals. But
it cannot be said that a temperature of 40°C (104°F) is twice as hot as a temperature of
20°C (68°F); i.e., the zero point is arbitrary. (Temperature measurements on the absolute,
or Kelvin [K], scale can be referred to a physically meaningful zero and thus constitute
a ratio scale.)

Some interval scales encountered in biological data collection are circular scales.
Time of day and time of the year are examples of such scales. The interval between
2:00 pm (i.e., 1400 hr) and 3:30 pm (1530 hr) is the same as the interval between 8:00 Am
(0800 hr) and 9:30 am (0930 hr). But one cannot speak of ratios of times of day because
the zero point (midnight) on the scale is arbitrary, in that one could just as well set up
a scale for time of day which would have noon, or 3:00 pM, or any other time as the
zero point. Circular biological data are occasionally compass points, as if one records
the compass direction in which an animal or plant is oriented. Since the designation of
north as 0° is arbitrary, this circular scale is a form of interval scale of measurement.
Some special statistical procedures are available for circular data; these are discussed in
chapters 25 and 26.

Data on an Ordinal Scale. The preceding paragraphs on ratio and interval scales
of measurement discussed data between which we know numerical differences. For
example, if man A weighs 80 kg and man B weighs 70 kg, then man A is known to
weigh 10 kg more than B. But our data may, instead, be a record only of the fact that
man A weighs more than man B (with no indication of how much more). Thus, we may
be dealing with relative differences rather than with quantitative differences. Such data
consist of an ordering or ranking of measurements and are said to be on an ordinal scale
of measurement (“ordinal” being from the Latin word for “order”). One may speak of
one biological entity being shorter, darker, faster, or more active than another; the sizes
of five cell types might be labeled 1, 2, 3, 4, and 5, to denote their magnitudes relative
to each other; or success in learning to run a maze may be recorded as A, B, or C.
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It is often true that biological data expressed on the ordinal scale could have
been expressed on the interval or ratio scale had exact measurements been obtained
(or obtainable). Sometimes data that were originally on interval or ratio scales will be
changed to ranks; for example, examination grades of 99, 85, 73, and 66% (ratio scale)
might be recorded as A, B, C, and D (ordinal scale), respectively.

Ordinal scale data contain and convey less information than ratio or interval data,
for only relative magnitudes are known. Consequently, quantitative comparisons are
impossible (e.g., we cannot speak of a grade of C being half as good as a grade of A,
or of the ditference between cell sizes 1 and 2 being the same as the difference between
sizes 3 and 4). However, we will see that many useful statistical procedures are, in fact,
applicable to ordinal data.

Data on a Nominal Scale. Sometimes the variable under study is classified by
some quality it possesses rather than by a numerical measurement. In such cases the
variable is called an attribute, and we are said to be using a nominal scale of measure-
ment. Genetic phenotypes are commonly encountered biological attributes; the possible
manifestation of an animal’s eye color may be blue or brown, and if human hair color
were the attribute of interest, we might record black, brown, blonde, or red. On a nomi-
nal scale (“nominal” is from the Latin word for “name”), animals might be classified as
male or female, or as left- or right-handed. Or plants might be classified as dead or alive,
or as with or without thorns. Taxonomic categories also form a nominal classification
scheme (e.g., a plant might be classified as pine, spruce, or fir). Sometimes data from
an ordinal, interval, or ratio scale of measurement may be recorded in nominal-scale
categories. For example, heights may be recorded as tall or short, or performance on an
examination as pass or fail.

As will be seen, statistical methods useful with ratio, interval, or ordinal data
generally are not applicable to nominal data, and we must, therefore, be able to identify
such situations when they occur.

Continuous and Discrete Data. When we spoke above of plant heights, we were
dealing with a variable that could be any conceivable value within any observed range;
this is referred to as a continuous variable. That is, if we measure a height of 35 cm
and a height of 36 cm, an infinite number of heights is possible in the range from 35
to 36 cm: a plant might be 35.07 cm tall or 35.988 cm tall, or 35.3263 cm tall, etc.,
although, of course, we do not have devices sensitive enough to detect this infinity of
heights. A continuous variable is one for which there is a possible value between any
other two possible values.

However, when speaking of the number of leaves on a plant, we are dealing with a
variable that can take on only certain values. It might be possible to observe 27 leaves, or
28 leaves, but 27.43 leaves and 27.9 leaves are values of the variable that are impossible
to obtain. Such a variable is termed a discrete or discontinuous variable (also known as
a meristic variable). The number of white blood cells in 1 mm® of blood, the number
of giraffes visiting a water hole, and the number of eggs laid by a grasshopper are all
discrete variables. The possible values of a discrete variable generally are consecutive
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integers, but this is not necessarily so. If the leaves on our plants are always formed
in pairs, then only even integers are possible values of the variable. And the ratio of
number of wings to number of legs of insects is a discrete variable that may only have
the value of 0, 0.3333..., or 0.6666 ... (i.e., 2, , or %, respectively).*

Ratio-, interval-, and ordinal-scale data may be either continuous or discrete.
Nominal-scale data by their nature are discrete.

1.2 ACCURACY AND SIGNIFICANT FIGURES

Accuracy is the nearness of a measurement to the actual value of the variable being
measured. Precision is not a synonymous term, but refers to the closeness to each other
of repeated measurements of the same quantity.

If we report that the hind leg of a frog is 8 cm long, we are stating the number 8 (a
value of a continuous variable) as an estimate of the frog’s true leg length. This estimate
was made using some sort of a measuring device. Had the device been capable of more
accuracy, we might have concluded that the leg was 8.3 cm long, or perhaps 8.32 cm long.
When recording values of continuous variables, it is important to designate the accuracy
with which the measurements have been made. By convention, the value 8 denotes a
measurement in the range of 7.50000 ... to 8.49999. .., the value 8.3 designates a range
of 8.25000 ... to 8.34999. .., and the value 8.32 implies that the true value lies within
the range of 8.31500. .. to 8.32499. ... That is, the reported value is the midpoint of the
implied range, and the size of this range is designated by the last decimal place in the
measurement. The value of 8 cm implies a range of accuracy of 1 cm, 8.3 cm implies a
range of 0.1 cm, and 8.32 cm implies a range of 0.01 cm. Thus, to record a value of 8.0
implies greater accuracy of measurement than does the recording of a value of 8, for in
the first instance the true value is said to lie between 7.95000 ... and 8.049999. .. (i.e.,
within a range of 0.1 cm), whereas 8 implies a value between 7.50000 . .. and 8.49999. ..
(i.e., within a range of 1 cm). To state 8.00 cm implies an accuracy in measurement
which ascertains the frog’s limb length to be between 7.99500 ... and 8.00499 ... cm
(i.e., within a range of 0.01 cm). Those digits in a number that denote the accuracy of
the measurement are referred to as significant figures. Thus, 8 has one significant figure,
8.0 and 8.3 each have two significant figures, and 8.00 and 8.32 each have three.

In working with exact values of discrete variables, the preceding considerations do
not apply. That is, it is sufficient to state that our frog has four limbs or that its left lung
contains thirteen flukes. The use of 4.0 or 13.00 would be inappropriate, for since the
numbers involved are exactly 4 and 13, there is no question of accuracy or significant
figures.

But there are instances where significant figures and implied accuracy come into
play with discrete data. An entomologist may report that there are 72,000 moths in a
particular forest area. In doing so, it is probably not being claimed that this is the exact

*The ellipses (...) may be read as “and so on.” Here, they indicate that % and % are repeating decimal
fractions, which could just as well have been written as 0.3333333333333 ... and 0.6666666666666.. .,
respectively.
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number but an estimate of the exact number, perhaps accurate to two significant figures.
In such a case, 72,000 would imply a range of accuracy of 1000, so that the true value
might lie anywhere from 71,500 to 72,500. If the entomologist wished to convey the fact
that this estimate is believed to be accurate to the nearest 100 (i.e., to three significant
figures), rather than to the nearest 1000, it would be better to present the data in the
form of scientific notation, as follows: If the number 7.2 x 10* (= 72,000) is written,
a range of accuracy of 0.1 x 10* (= 1000) is implied, and the true value is assumed to
lie between 71,500 and 72,500. But if 7.20 x 10* were written, a range of accuracy of
0.01 x 10* (= 100) would be implied, and the true value would be assumed to be in the
range of 71,950 to 72,050. Thus, the accuracy of large values (and this applies to contin-
uous as well as discrete variables) can be expressed succinctly using scientific notation.

Calculators and computers typically yield results with more significant figures than
are justified by the data. However, it is good practice—to avoid rounding error—to
retain many significant figures for all steps until the last in a sequence of calculations,
and on attaining the result of the final step to round off to the appropriate number of
figures.

1.3 FREQUENCY DISTRIBUTIONS

When collecting and summarizing large amounts of data, it is often helpful to record
the data in the form of a frequency table. Such a table simply involves a listing of all
the observed values of the variable being studied and how many times each value is
observed. Consider the tabulation of the frequency of occurrence of sparrow nests in
each of several different locations. This is illustrated in Example 1.1, where the observed
nest sites are listed, and for each site the number of nests observed is recorded. The
distribution of the total number of observations among the various categories is termed
a frequency distribution. Example 1.1 is a frequency table for nominal data, and these
data may also be presented graphically by means of a bar graph (Fig. 1.1), where the
height of each bar is proportional to the frequency in the class represented. The widths
of all bars in a bar graph should be equal so that the eye of the reader is not distracted
from the differences in bar heights; this also makes the area of each bar proportional to
the frequency it represents. Also, the frequency scale on the vertical axis should begin
at zero to avoid the apparent differences among bars. If, for example, a bar graph of
the data of Example 1.1 were constructed with the vertical axis representing frequencies

EXAMPLE 1.1 The location of sparrow nests. A frequency table of nominal data.

Number of
Nest site nests observed
A. Vines 56
B. Building eaves 60
C. Low tree branches 46

D. Tree and building cavities 49




