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Preface

The purpose of this book is to present the vibration and acoustical behavior of
typical sandwich structures subject to mechanical and/or acoustical loadings, which
actually form a class of structural elements of practical importance in huge amounts
of engineering applications, such as aircraft fuselage, ship and submarine hulls. The
contents of this book has grown out of the research activities of the authors in the
field of sound radiation/transmission of/through lightweight sandwich structures.

The book is organized into six chapters: Chapter 1 deals with the vibro-acoustic
performance of rectangular multiple-panel partitions with enclosed air cavity
theoretically and experimentally, which has accounted for the simply supported and
clamp supported boundary conditions. Chapter 2 concerns with the transmission
of external jet-noise through a uniform skin plate of aircraft cabin fuselage in the
presence of external mean flow. As an extension, Chap. 3 handles with the noise
radiation and transmission from/through aeroelastic skin plates of aircraft fuselage
stiffened by orthogonally distributed rib-stiffeners in the presence of convected
mean flow. Chapter 4 develops a theoretical model for sound transmission through
all-metallic, two-dimensional, periodic sandwich structures having corrugated core.
Chapter 5 focuses on the sound radiation and transmission characteristics of
periodically stiffened structures. Ultimately, Chap. 6 proposes the sound radiation
and transmission behaviors of periodical sandwich structures having cavity-filling
fibrous sound absorptive materials.

This book is involving multidisciplinary subjects especially including combined
knowledge of vibration, aeroelastics and structural acoustics, which pays much
attention on showing results and conclusions, in addition to mere theoretical
modelling. Therefore this book should be of considerable interest to a wide range of
readers in relevant fields. It is hoped that the content of the book will find application
not only as a textbook for a wide audience of engineering students, but also a general
reference for researchers in the field of vibrations and acoustics.

Xi’an, China TJ.Lu
EX. Xin
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Chapter 1
Transmission of Sound Through Finite
Multiple-Panel Partition

Abstract This chapter is organized as three parts: in the first part, the vibroacoustic
performance of a rectangular double-panel partition with enclosed air cavity and
simply mounted on an infinite acoustic rigid baffle is investigated analytically.
The sound velocity potential method rather than the commonly used cavity modal
function method is employed, which possesses good expandability and has signif-
icant implications for further vibroacoustic investigations. The simply supported
boundary condition is accounted for by using the method of modal function, and
double Fourier series solutions are obtained to characterize the vibroacoustic behav-
iors of the structure. Results for sound transmission loss (STL), panel vibration
level, and sound pressure level are presented to explore the physical mechanisms
of sound energy penetration across the finite double-panel partition. Specifically,
focus is placed upon the influence of several key system parameters on sound
transmission, including the thickness of air cavity, structural dimensions, and the
elevation angle and azimuth angle of the incidence sound. Further extensions of the
sound velocity potential method to typical framed double-panel structures are also
proposed.

In the second part, the air-borne sound insulation performance of a rectangular
double-panel partition clamp mounted on an infinite acoustic rigid baffle is inves-
tigated both analytically and experimentally, and compared with that of a simply
supported one. With the clamped (or simply supported) boundary accounted for
by using the method of modal function, a double series solution for the sound
transmission loss (STL) of the structure is obtained by employing the weighted
residual (Galerkin) method. Experimental measurements with Al double-panel
partitions having air cavity are subsequently carried out to validate the theoretical
model for both types of the boundary condition, and good overall agreement is
achieved. A consistency check of the two different models (based separately on
clamped modal function and simply supported modal function) is performed by
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extending the panel dimensions to infinite where no boundaries exist. The significant
discrepancies between the two different boundary conditions are demonstrated in
terms of the STL versus frequency plots as well as the panel deflection mode
shapes.

In the third part, an analytical model for sound transmission through a clamped
triple-panel partition of finite extent and separated by two impervious air cavities
is formulated. The solution derived from the model takes the form of that for
a clamp-supported rectangular plate. A set of modal functions (or more strictly
speaking, the basic functions) are employed to account for the clamped boundary
conditions, and the application of the virtual work principle leads to a set of
simultaneous algebraic equations for determining the unknown modal coefficients.
The sound transmission loss (STL) of the triple-panel partition as a function
of excitation frequency is calculated and compared with that of a double-panel
partition. The model predictions are then used to explore the physical mechanisms
associated with the various dips on the STL versus frequency curve, including the
equivalent “mass-spring” resonance, the standing-wave resonance, and the panel
modal resonance. The asymptotic variation of the solution from a finite-sized
partition to an infinitely large partition is illustrated in such a way as to demonstrate
the influence of the boundary conditions on the soundproofing capability of the
partition. In general, a triple-panel partition outperforms a double-panel partition in
insulating the incident sound, and the relatively large number of system parameters
pertinent to the triple-panel partition in comparison with that of the double-panel
partition offers more design space for the former to tailor its noise reduction
performance.

1.1 Simply Supported Finite Double-Panel Partitions

1.1.1 Introduction

Double-leaf partition structures have found increasingly wide applications in noise
control engineering due to their superior sound insulation capability over single-leaf
configurations. Typical examples include transportation vehicles, grazing windows
and partition walls in buildings, aircraft fuselage shells, and so on [1-12].
Considerable efforts have been devoted to understanding and predicting the
transmission of sound across single-leaf [13—15] and double-leaf [16-29] partitions.
In fact, research about the former is often a prerequisite for studying the latter.
For instance, Lomas [14] developed Green function solution for the steady-state
vibration of an elastically supported rectangular plate coupled to a semi-infinite
acoustic medium. An important feature of the investigation is the treatment of
the elastic support boundary condition which was taken into account by assuming
the rotational motion along the boundary controlled by distributions of massless
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rotary springs and by introducing the corresponding moments into the governing
equations. The problem of sound radiation by a simply supported unbaffled panel
was investigated by Laulagnet [13]. Both pressure jump and plate displacement in
series of the simply supported plate models were developed.

Early sound transmission studies [16, 28-30] of double-panel structures with air
cavity in between generally simplified the structure as infinite and hence did not
account for the elastic boundary conditions on the periphery. For typical examples,
Antonio et al. [17] gave an analytical evaluation of the acoustic insulation provided
by double infinite walls and also did not take elastic boundary condition into
account. Kropp et al. [19] addressed the optimization of sound insulation of double-
panel constructions by dividing the frequency range into three cases, i.e., where
the double wall resonance frequency is much higher (or closer or much lower)
than the critical frequency of the total construction. Recently, Tadeu et al. [20]
adopted an analytical method to assess the airborne sound and impact insulation
properties of single- and double-leaf panels by neglecting the elastic boundary
conditions. Bao and Pan [31] presented an experimental study on active control
of sound transmission through double walls with different approaches, including
cavity control, panel control, and room control.

For simply supported, finite rectangular double-panel structures, existing studies
[3, 22-27, 32-37] concerned mainly with the loss of sound transmission across the
structure, without detailed analysis about the energy transmission, the vibroacoustic
coupling effects, and the physical mechanisms of sound transmission process across
the structure. In particular, previous studies on double-panel partitions focus on
either infinite extent or finite extent, without exploring the natural relationship
between the two. The present study squarely addresses these deficiencies from
the new perspectives of the integration analysis of STL, panel vibration level,
and sound pressure level, with more details and the physical nature of sound
penetration through double-panel partitions revealed. Since the rigid baffle bounds
the cavity as well as the panel so that the cavity boundaries restrict the field
to sinusoidal distributions parallel to the panel plane, analytical solutions in
double Fourier series are proposed by applying the sinusoidal distributed sound
velocity potential method. This method can be easily expanded to the vibroacoustic
analysis of rib-stiffened double-panel structures, accounting for both the structure-
borne route (i.e., structural connections between the two panels) and the airborne
route (i.e., air cavity between the two panels), and hence can be regarded as an
alternative of the cavity mode method in certain engineering applications. The
model predictions are validated by comparing the analytical results with existing
experimental data. The influences of key system parameters such as air cavity
thickness, panel dimensions, and elevation angle and azimuth angle of incident
sound on the sound insulation capability of the finite double-panel partition are
systematically investigated. The results and conclusions of the present study should
be referentially significant to others due to the similar physical nature of the
vibroacoustic problem.
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a
Infinite rigid baffle

Simply supported
double-panel

Radiation sound Rigid baffle

i 2 _

h, = X

h 3 paose
1

|
Reflection | ()
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Fig. 1.1 Schematic of sound transmission through a baffled, rectangular, simply supported double-
panel partition: (a) global view; (b) side view in the arrow direction in (a) (With permission from
ASME)

1.1.2 Vibroacoustic Theoretical Modeling

The finite double-panel partition with enclosed air cavity is assumed to be rectan-
gular, baffled, and simply supported along its boundaries, as shown in Fig. 1.1. The
two panels are homogenous and isotropic and modeled as classical thin plate. The
following geometrical dimensions are considered: the incident (bottom) panel and
the radiating (top) panel have identical length ¢ and width b, but may have different
thicknesses /; and A, (Fig. 1.1b); the thickness of the air cavity is H (Fig. 1.1b). The
whole configuration is mounted on an infinite acoustic rigid baffle which separates
the space into two fields, i.e., sound incidence field (z < 0) and sound radiating field
(z> H). A uniform plane sound wave varying harmonically in time is obliquely
incident on the bottom panel, with incident elevation angle ¢ and azimuth angle
0 (Fig. 1.1b). The vibration of the incident panel induced by the incident sound is
transmitted through the enclosed air cavity to the radiating panel, which radiates
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sound into the acoustic medium. The vibroacoustic behaviors of the double-panel
structure coupling with air cavity as well as sound transmission loss across the
structure are to be solved analytically with the sound velocity potential method.

1.1.3 Mathematic Formulation and Solution

For an obliquely incident uniform plane sound wave varying harmonically in time,
its acoustic velocity potential can be expressed as

¢ = [é’_j (k.‘ .\’+/\'}~,\'+k;:—tut) (1.1)

where I is the amplitude; ; = +/—1; @ is the angular frequency; and k,, &y, and k;
are the wavenumber components in the x-, y-, and z-directions, respectively:

ke =kosingcosf, k, =kosingsin®, k. =kocosg (1.2)

Here, ko = w/cy is the acoustic wavenumber in air, with ¢y denoting the sound
speed in air.

Due to the excitation of the incident sound wave, the double-panel configuration
with enclosed air cavity vibrates and radiates sound. The vibroacoustic behaviors of
the structure are governed by

4 azwl .

DiViw +m a2 — jwpo (P — P2) =0 (1.3)
4 a?'Wg .

D>Viwy + My —JOPo (P, —P3) =0 (1.4)

where pg is the air density and (w,, w»), (m;, my) and (D;, D,) are the transverse
displacements, surface densities, and flexural rigidities of the incident and radiating
panels, located at z=0 and z = H, respectively (Fig. 1.1). By introducing the loss
factor of the panel material, the flexural rigidity of the panel D; (i=1,2) can be
written in terms of the complex Young’s modulus Ej(1 + jn;) as

_ER 1+ jn)

e (1.5)
12 (1 =v?)

The hard-walled cavity modal function ¢, , = cos(mmx/a)cos(nmy/b)cos(inz/c) can
only accurately model the sound field in a rigidly bounded cavity volume. It will
therefore deviate somewhat from the precise results when the hard-walled cavity
modal function is employed here to model the cavity bounded by two large flexural
panels. In order to avoid this drawback, the sound velocity potential method is
adopted, which is completely different from previous investigations based on cavity
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modal function. Let ®; (i=1,2,3) denote the velocity potentials of the three
acoustic fields, i.e., sound incidence field, air cavity field, and structure radiating
field (Fig. 1.1b), respectively. The velocity potential for the incident field can be
defined as

O (x,y,2:1) = Il (kxx+kyy+k.z—wt) + ,Be_j (kxx+kyy—k.z—t) (1.6)

where the first and second terms represent separately the velocity potential of the
incident and the reflected plus radiating sound waves and / and 8 are the amplitudes
of the incident (i.e., positive-going) and the reflected plus radiating (i.e., negative-
going) waves, respectively. Similarly, the velocity potential in the air cavity can be
written as

CDZ (x, 9.2 t) - Ee_j (k_‘.x-i—k_yy-f—k;z—wl) 4 g-e—j (kxx+k,~y—k;z—w1) (1_7)

where ¢ is the amplitude of positive-going wave and ¢ is the amplitude of negative-
going wave. In the radiating field, there exist no reflected waves; thus, the velocity
potential is only for radiating waves:

4)3 (x, V.2 l) - Ee—j(k,‘x+kyy+klz—wt) (18)

where £ is the amplitude of radiating (i.e., positive-going) wave. The local acoustic
velocities and sound pressure are related to the velocity potentials by

e 0o, . .
u; =_V¢f9 Pi =p08_t1=jwp0q>i (l :172*3) (19)
For simply supported boundary condition, the transverse displacement and the
transverse force are constrained to be zero at the periphery of the panel. Given
that the double-panel structure is rectangular, the boundary conditions can be
expressed as

32W1 32W2
=0,a: =wr =0, —5 = — = .
X a Wi = wy 2 i (1.10)
32W| 32W2
y:O,b: W|:W2:0.'8y—2:8—yz—:0 (1.11)

At the air-panel interface, the normal velocity should be continuous, yielding the
following velocity compatibility equations:

2=0: ——— = jow,, ——2 = jow, (1.12)

®
i=H: ——2= jow, ~3—Z3 = jow; (1.13)



