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Preface

The primary mission of the second edition of the Handbook of Food Engineering is the same as the
first. The most recent information needed for efficient design and development of processes used
in the manufacturing of food products has been assembled, along with the traditional background on
these processes. The audience for this handbook includes three groups: (1) practicing engineers in
the food and related industries, (2) the student preparing for a career as a food engineer, and (3) other
scientists and technologists seeking information about processes and the information needed in design
and development of these processes. For the practicing engineer, the handbook assembles information
needed for the design and development of a given process. For the student, the handbook becomes
the primary reference needed to supplement textbooks used in the teaching of process design and
development concepts. Other scientists and technologists should use the handbook to locate important
information and physical data related to foods and food ingredients.

As in the first edition, the handbook assembles the most recent information on thermophysical
properties of foods, rate constants about changes in food components during a process, and illus-
trations of the use of these properties and constants in process design. Researchers will be able to
use the information as a guide in establishing the direction of future research on thermophysical
properties and rate constants. In this edition, an appendix has been created to assemble tables and
figures containing property data needed for the design of processes described in various chapters of
the handbook.

Although the first three chapters focus primarily on properties of food and food ingredients,
the chapters that follow are organized according to traditional unit operations associated with the
manufacturing of foods. Two key chapters cover the basic concepts of transport and storage of liquids
and solids, and the heating and cooling of foods and food ingredients. An additional background
chapter focuses on basic concepts of mass transfer in foods. More specific unit operations on freezing,
concentration, dehydration, thermal processing, and extrusion are discussed and analyzed in separate
chapters. The chapter on membrane processes deals with liquid food concentration but provides the
basis for other applications of membranes in food processing. The final chapters of the handbook
cover the important topics of packaging and cleaning and sanitation.

The editors of this handbook hope that the information presented will continue to contribute to
the evolution of food engineering as an interface between engineering and other food sciences. As
demands for safe, high quality, nutritious and convenient foods continue to increase, the needs for
the concepts presented will become more critical. In the near future, the applications of new science
from molecular biology, nanotechnology, and nutritional biochemistry in food manufacturing will
increase, and the role of engineering in process design and scale-up will be even more visible. At
the same time, new process technologies will continue to emerge and require input from engineers
for application, design, and development in food manufacturing. Ultimately, the use of engineering
concepts should lead to the highest quality food products at the lowest possible cost.

The editors wish to acknowledge the authors and their significant contributions to the second
edition of this handbook. These authors are among the leading scientists and engineers in the field



of food engineering. We are pleased to be associated with their contributions to this field and to the
handbook.

Dennis R. Heldman
Daryl B. Lund
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1.1 INTRODUCTION

Rheological properties are important to the design of flow processes, quality control, storage and
processing stability measurements, predicting texture, and learning about molecular and conforma-
tional changes in food materials (Davis, 1973). The rheological characterization of foods provides
important information for food scientists, ingredient selection strategies to design, improve, and
optimize their products, to select and optimize their manufacturing processes, and design packaging
and storage strategies. Rheological studies become particularly useful when predictive relationships
for rheological properties of foods can be developed which start from the molecular architecture of
the constituent species.

Reliable and accurate steady rheological data are necessary to design continuous-flow pro-
cesses, select and size pumps and other fluid-moving machinery and to evaluate heating rates during
engineering operations which include flow processes such as aseptic processing and concentration
(Holdsworth, 1971; Sheath, 1976), and to estimate velocity, shear, and residence-time distribution
in food processing operations including extrusion and continuous mixing.

Viscoelastic properties are also useful in processing and storage stability predictions. For
example, during extrusion, viscoelastic properties of cereal flour doughs affect die swell and extrud-
ate expansion. In batch mixing, elasticity is responsible for the rod climbing phenomenon, also
known as the Weissenberg effect (Bird et al., 1987). To allow for elastic recovery of dough during
cookie making, the dough is cut in the form of an ellipse which relaxes into a perfect circle.

Creep and small-amplitude oscillatory measurements are useful in understanding the role of con-
stituent ingredients on the stability of oil-in-water emulsions. Steady shear and creep measurements
help identify the effect of ingredients that have stabilizing ability, such as gums, proteins, or other
surface-active agents (Fischbach and Kokini, 1984).

Dilute solution viscoelastic properties of biopolymeric materials such as carbohydrates and pro-
tein can be used to characterize their three-dimensional configuration in solution. Their configuration
affects their functionality in many food products. It is possible to predict better and improve the flow
behavior of food polymers through an understanding of how the molecular structure of polymers
affects their rheological properties (Liguori, 1985). Examples can be found in the improvement of
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FIGURE 1.1 Stress components on a cubical material element.

the consistency and stability of emulsions by using polymers with enhanced surface activity and
greater viscosity and elasticity.

This chapter will review recent advances in basic rheological concepts, methods of measurement,
molecular theories, linear and nonlinear constitutive models, and numerical simulation of viscoelastic
flows.

1.2 BASIC CONCEPTS

1.2.1 STRESS AND STRAIN

Rheology is the science of the deformation and flow of matter. Rheological properties define the
relationship between stress and strain/strain rate in different types of shear and extensional flows. The
stress is defined as the force F acting on a unit area A. Since both force and area have directional as
well as magnitude characteristics, stress is a second order tensor and typically has nine components.
Strain is a measure of deformation or relative displacement and is determined by the displacement
gradient. Since displacement and its relative change both have directional properties, strain is also a
second order tensor with nine components.

A rheological measurement is conducted on a given material by imposing a well-defined stress
and measuring the resulting strain or strain rate or by imposing a well-defined strain or strain rate and
by measuring the stress developed. The relationship between these physical events leads to different
kinds of rheological properties.

When a force F is applied to a piece of material (Figure 1.1). the total stress acting on any
infinitesimal element is composed of two fundamental classes of stress components (Darby, 1976):

Normal stress components, applied perpendicularly to the plane (ty;, 122, 733)
Shear stress components, applied tangentially to the plane (712, 713, 721, 723, T31. T32)

There are a total of nine stress components acting on an infinitesimal element (i.e., two shear
components and one normal stress component acting on each of the three planes). Individual stress
components are referred to as t;;, where i refers to the plane the stress acts on, and j indicates the
direction of stress component (Bird et al., 1987). The stress tensor can be written as a matrix of nine
components as follows:

T T2 T3
T= T2 T22 123
T3] 132 133
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In general, the stress tensor in the deformation of an incompressible material is described by three
shear stresses and two normal stress differences:

Shear stresses: T12(=121) T13(=13)) 23(=132)

Normal stress differences: Ny =11 — 12 N> =10 — 133

1.2.2 CLASSIFICATION OF MATERIALS

Rheological properties of materials are the result of their stress-strain behavior. Ideal solid (elastic)
and ideal fluid (viscous) behaviors represent two extreme responses of a material (Darby, 1976).

An ideal solid material deforms instantaneously when a load is applied. It returns to its original
configuration instantaneously (complete recovery) upon removal of the load. Ideal elastic materials
obey Hooke's law, where the stress (7) is directly proportional to the strain (). The proportionality
constant (G) is called the modulus.

T =Gy

An ideal fluid deforms at a constant rate under an applied stress, and the material does not
regain its original configuration when the load is removed. The flow of a simple viscous material is
described by Newton’s law, where the shear stress (7) is directly proportional the shear rate (). The
proportionality constant (1) is called the Newtonian viscosity.

T =1y

Most food materials exhibit characteristics of both elastic and viscous behavior and are called
viscoelastic. If viscoelastic properties are strain and strain rate independent, then these materials
are referred to as linear viscoelastic materials. On the other hand if they are strain and strain rate
dependent, than they are referred to as nonlinear viscoelastic materials (Ferry, 1980; Bird et al.,
1987; Macosko, 1994).

A simple and classical approach to describe the response of a viscoelastic material is using
mechanical analogs. Purely elastic behavior is simulated by springs and purely viscous behavior is
simulated using dashpots. The Maxwell and Voigt models are the two simplest mechanical analogs
of viscoelastic materials. They simulate a liquid (Maxwell) and a solid (Voigt) by combining a
spring and a dashpot in series or in parallel, respectively. These mechanical analogs are the building
blocks of constitutive models as discussed in Section 1.4 in detail.

1.2.3 TyPES OF DEFORMATION

1.2.3.1 Shear Flow

One of the most useful types of deformation for rheological measurements is simple shear. In simple
shear, a material element is placed between two parallel plates (Figure 1.2) where the bottom plate is
stationary and the upper plate is displaced in x-direction by Ax by applying a force F tangentionally
to the surface A. The velocity profile in simple shear is given by the following velocity components:

vw=pyv. vw=0, and v-=0

The corresponding shear stress is given as:

SIS
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FIGURE 1.2 Shear flow.

If the relative displacement at any given point Ay is Ax, then the shear strain is given by

_ Ax

V—A__\'

If the material is a fluid, force applied tangentially to the surface will result in a constant velocity v,
in x-direction. The deformation is described by the strain rate (), which is the time rate of change

of the shear strain:
. dy  d <A.\‘> _dy,
¥= dr — dr\Ay/  dvy
Shear strain defines the displacement gradient in simple shear. The displacement gradient is the

relative displacement of two points divided by the initial distance between them. For any continuous
medium the displacement gradient tensor is given as:

COuy,  duy Oy

dx;  0xy X3
du; dur  dur  dud

0x; x| dxy  0x3
duz  Juy  Juz

| 0x)  dx2  0x3 |

A nonzero displacement gradient may represent pure rotation, pure deformation, or both (Darby.
1976). Thus, each displacement component has two parts:

ou; I [(Ou;  Ouy 1 [(Ou;  Ouj
=i | a= dre = P fine— ==
0x; 2 \ Ox; ax; 2\ Ox; dx;

Pure deformation Pure rotation

Then the strain tensor (¢;;) can be defined as:

(éilzi " ou;
eii = == = =
Ty

Similarly, the rotation tensor (r;;) can be defined as:



