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Preface

This book is intended to serve as introductory and
reference material for the application of integral transforms
to a range of common mathematical problems. It has its im-
mediate origin in lecture notes prepared for senior level
courses at the Australian National University, although I owe
a great deal to my colleague Barry Ninham, a matter to which
I refer below. In preparing the notes for publication as a
book, I have added a considerable amount of material addi-
tional to the lecture notes, with the intention of making the
book more useful, particularly to the graduate student in-
volved in the solution of mathematical problems in the physi-
cal, chemical, engineering and related sciences.

Any book is necessarily a statement of the author's
viewpoint, and involves a number of compromises. My prime
consideration has been to produce a work whose scope is
selective rather than encyclopedic; consequently there are

many facets of the subject which have been omitted--in not a

few cases after a preliminary draft was written--because I



believe that their inclusion would make the book too long.

Some of the omitted material is outlined in various problems

and should be useful in indicating possible approaches to

certain problems. I have laid great stress on the use of

complex variable techniques, an area of mathematics often

unfashionable, but frequently of great power. I have been

particularly severe in excising formal proofs, even though

there is a considerable amount of '"pure mathematics'" associated
with the understanding and use of generalized functions,
another area of enormous utility in mathematics. Thus, for

the formal aspects of the theory of integral transforms I
must refer the reader to one of the many excellent books
addressed to this area; I have chosen an approach which is
more common in published research work in applications. I
can only hope that the course which I have steered will be
of great interest and help to students and research workers
who wish to use integral transforms.

It was my priviledge as a student to attend lectures
on mathematical physics by Professor Barry W. Ninham, now at
this university. For several years it was his intention to
publish a comprehensive volume on mathematical techniques in
physics, and he prepared draft material on several important
topics to this end. In 1972 we agreed to work on this pro-
ject jointly, and continued to do so until 1975. During
that period it became apparent that the size, and therefore
cost, of such a large volume would be inappropriate to the
current situation, and we decided to each publish a smaller
book in our particular area of interest. I must record my
gratitude to him for agreeing that one of his special
interests--the use of the Mellin transform in asymptotics--

vi



should be included in the present book. In addition there

are numerous other debts which I owe to him for guidance

and criticism.

References to sources of material have been made in

two ways, since this is now a fairly old subject area. First,

there is a selected bibliography of books, and I have
referred, in various places, to those books which have been
of particular assistance to me in preparing lectures or in
pursuing research. Second, where a section is based directly

on an original paper, the reference is given as a footnote.

Apart from this, I have not burdened the reader with tedious

lists of papers, especially as there are some comprehensive

indexing and citation systems now available.

A great deal of the final preparation was done while

I was a visitor at the Unilever Research Laboratories (UK)

and at Liverpool University in 1975, and I must thank those

establishments for their hospitality, and the Australian

National University for the provision of study leave. Most

of the typing and retyping of the manuscript has been done

by Betty Hawkins of this department while the figures were

prepared by Mrs. L. Wittig of the photographic services de-

partment, ANU. Timothy Lewis, of Applied Mathematics at

Brown University, has proofread the manuscript and suggested

a number of useful changes. To these people I express my

gratitude and also to Professor Lawrence Sirovich for his

encouragement and helpful suggestions. This book is dedicated

to my respected friend and colleague, Barry Ninham.

Brian Davies

Canberra, Australia
1977
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Part I: The Laplace Transform

it
§1. DEFINITION AND ELEMENTARY PROPERTIES

1.1. The Laplace Transform

Let f(t) be an arbitrary function defined on the

interval 0 < t < «; then
* t
B(p) = J e Pt £ty de (1)
0

is the Laplace transform of f(t), provided that the integral
exists. We shall confine our attention to functions f(t)
which are absolutely integrable on any interval 0 < t < a,
and for which F(a) exists for some real o. It may readily
be shown that for such a function F(p) is an analytic func-

tion of p for Re(p) > o, as follows. First note that the

functions

.
6(p,T) = f e Pt £(e) at (2)
0

are analytic in p, and then that ¢(p,T) converges uni-
formly to F(p) in any bounded region of the p plane sat-

isfying Re(p) > a, as T » ». It follows from a standard



2 PART I: THE LAPLACE TRANSFORM

. 2 s s
theorem on uniform convergence that F(p) 1is analytic in
the half-plane Re(p) > o.

As simple examples of Laplace transforms, we have

(i) Heaviside unit step function

1, t>0
hee) = | (3)
0, t =<0
H(p) = f e Pt gt
0
= 1/p, Re(p) > 0, (4)
(i1)
TN i (5)
F(p) = fm IE IR 4y
0
= _1 Re(p) > O, (6)
p-iw >
(iii)
E(t) = 2 &°%, & sowl's % 7
F(p) = —X* ___, Re(p) > Re(g). (8)
(p-8) "1

An important feature of these examples, and indeed of
many of the Laplace transforms which occur in applications,
is that the analytic function defined by (1) in the half-plane
Re(p) > a can be analytically continued into the remainder
of the plane once the singularity structure has been eluci-
dated. Thus the functions defined by (4) and (6) exhibit
only a simple pole; in the case of (8) there is a branch
point at p = B except for the special case that y 1is an

integer, when we get a pole.



§1. Definition and elementary properties 3

1.2. Important Properties

There are a number of simple properties which are of
recurring importance in the application of the Laplace trans-
form to specific problems. In order to simplify somewhat

the statement of these results, we introduce the notation

e}

=pt
21£] = Fp) = [ e Pt £(r) at (9)
0
which emphasizes the operator nature of the transform.

Linearity: If we consider the linear combination
f(t) = kgl akfk(t) (10)

where the a

x are arbitrary constants, then

n
L] = L a6 ] - (11)

One immediate consequence of this is that if f depends on a

variable x which is independent of t, we have

L[3f/3x] = 3 L[£]/3x, (12)
b b

ﬁf{] f dé} = j Z[f] dx- (13)
a i a

These results follow by trivial manipulation of the integrals
in the half-space Re(p) > a in which all the integrals con-
verge absolutely and uniformly (in x). But then they must

also hold over the entire region of the complex p plane to

which the transforms may be analytically continued.

Derivatives and Integrals: If we apply integration by parts

to (1), we obtain



