


Pascal
Programming

Laurencé V. Atkinson
Department of Computer Science, University of Sheffield

A Wiley—Interscience Publication

JOHN WILEY & SONS

Chichester + New York -+ Brisbane - Toronto



Copyright © 1980 by John Wiley & Sons Ltd.
All rights reserved.

No part of this book may be reproduced by any means, nor
transmitted, nor translated into a machine language without
the written permission of the publisher.

British Library Cataloguing in Publication Data:

Atkinson, Laurence V.

Pascal programming.—(Wiley series in computing).
1. PASCAL (Computer program language)

1. Title

001.6424 QA76.73.P2 80-40126
ISBN 0 471 27773 8

ISBN 0 471 27774 6 Pbk

Typeset in Northern Ireland at The Universities Press (Belfast) Ltd.
and printed by Page Bros. (Norwich) Ltd., Norwich.



Pascal
Programming



WILEY SERIES IN COMPUTING

Consulting Editor
Professor D. W. Barron,
Department of Mathematics, Southampton University

Numerical Control—Mathematics and Applications
P. Bézier

Communication Networks for Computers
D. W. Davies and D. L. A. Barber

Macro Processors and Techniques for Portable Software
P. J. Brown

A Practical Guide to Algol 68
Frank G. Pagan

Programs and Machines |
Richard Bird

The Codasyl Approach to Data Base Management
T. William Olle

Computer Networks and their Protocols
D. W. Davies, D. L. A. Barber, W. L. Price, and C. M. Solomonides

Algorithms: Their Complexity and Efficiency
Lydia Kronsjo

Data Structures and Operating Systems
Teodor Rus

Writing Interactive Compilers and Interpreters
P. I. Brown

The Design of a Relational Data Base Management System
A. T. F. Hutt

GPSS. Simulation Made Simple
Thomas M. O’Donovan

Computer System Reliability
Roy Longbottom

Pascal Programming
Laurence V. Atkinson



Introduction

This book is intended both as an introductory text for those with no
previous knowledge of programming and as a conversion text for those with
experience of some high level programming language other than Pascal. The
book’s dual role has influenced its layout.

Some introductory remarks are presented for the benefit of those with no
knowledge of computers.

Part A (Chapters 1-8) introduces some programming concepts fundamen-
tal to all high level sequential programming languages. These are presented
here in the context of Pascal but most features will have equivalents in other
languages. The lessons of good programming style are relevant whatever
programming language is used. This is stressed in the discussion of loops
(Chapter 6). Loops abound in most programs but are a noted source of
trouble for beginners. The methodology of loop construction is given greater
emphasis than in most programming texts.

Experienced programmers should be able to read these chapters quickly
and acquaint themselves with the Pascal interpretation of familiar concepts.
Novices should acquire a solid foundation for succeeding chapters to build
upon.

Part B (Chapter 9) presents two features of Pascal which have no
counterpart in any other programming language (except those developed
from Pascal). These are the two most important new concepts in Pascal.
They have had a far-reaching effect upon the way we think about problems,
the way we express algorithms, the confidence we can place in our programs,
and the speed with which programs run on the computer. Coverage of these
two features, together with a discussion of their relevance to program
security, constitutes a complete Part to emphasize their importance. The
lessons to be learned from this chapter pervade the remainder of the
book.

Part C (Chapters 10-14) describes the data structuring facilities available
in Pascal.

Part D (Chapter 15) embodies the shortest chapter of the book. It
introduces a Pascal statement you should rarely have to use.

Each chapter concludes with a set of programming exercises. Within each
set these tend to be in increasing order of difficulty. If you do not have time

vii



viii

to complete all the excercises you should attempt at least those marked with
an asterisk. These form a representative sample. Because many examples
appear in the book no solutions to exercises are given, but notes and hints
for some exercises (marked with a dagger) are presented in Appendix F.

The book is essentially pedagogical and so should present information in
the order in which it can best be assimilated by the beginner; however, it
must also serve as a reference text. Inevitably, therefore, some compromises
have been made. The basic ordering of the topics is sensible from a teaching
(and, hence, learning) viewpoint but the depth of coverage is often greater
than the novice needs during a first reading. When teaching programming, I
introduce enumerated and subrange types (Chapter 9) after a shallow
coverage of the first six chapters but treat recursion and backtrack program-
ming (Chapter 7) as the last topic, while top-down design (Chapter 8)
influences the whole presentation.

Programming is best learned by practice. To this end complete programs
are introduced in Chapter 1 and throughout the book the empbhasis is on
illustration by example. The examples are taken from a variety of applica-
tion areas. Few examples require more than an elementary knowledge of
mathematics.

The computing world has its own jargon, familiar English words often
being used but with new meanings. Each new term introduced will be
enclosed within ‘“quotation marks”. Pascal text will appear in bold or
italicized type.



Computers and Computing:
Some Introductory Remarks

A computer is a machine. Our aim is to make the machine perform some
specified actions. With some machines we might express our intentions by
depressing keys, pushing buttons, rotating knobs, etc. For a computer we
construct a sequence of instructions (this is a “program”) and present this
sequence to the machine. If we have a “terminal” (rather like an electric
typewriter, possibly with a display screen in place of paper) connected to the
computer we can type our program directly. An alternative method is to
type the information onto a “punched card”, a rectangular piece of high
quality card (typically 19 cm by 8 cm). A “card punch” is a machine capable
of punching patterns of holes in any of 80 columns across the card. In any
column of the card is a pattern of holes and no-holes which can be sensed by
a “card reader”. A light shines onto one side of the card and the positions of
the holes are determined by a bank of photoelectric cells on the other. Thus
the information we type is recorded in a sort of Morse code. Many such
cards can be collected together and fed to the computer as a “deck”. There
are other ways of getting information into a computer but you are unlikely
to meet them in the context of an introductory programming course.

When the computer has done something, hopefully what we wanted it to,
we require it to produce some ‘“‘output”. If we are communicating with the
machine via a terminal we would expect the output to appear at the
terminal. If we are communicating via any other medium, output will
probably be produced by a “line printer”. This machine handles continuous
stationery folded into pages (typically 36 cm wide and 28 cm high) and is so
called because it produces its print in units of a line (unlike a typewriter
which produces its type one character at a time).

The particular system available to you will depend upon the “operational
environment” of your computer installation. Pascal programs as presented
in this book are independent of the operational environment but the
conventions of your installation will dictate the way programs are supplied
to the computer.

When specifying our intentions to the computer we must be precise. The
computer has no intelligence but merely responds in a certain well-defined

1X



X

way to each correctly supplied instruction. Natural English is prone to
ambiguity and so is not a suitable language in which to express our instruc-
tions. Accordingly languages have been developed for the specific purpose
of communicating with computers. These languages are called ‘“‘program-
ming languages”.

Every computer has a basic set of instructions which it can obey directly
but writing programs in this ‘““machine code’ is very tedious and error prone.
Accordingly ‘high level languages™ have been developed to make life easier
for us. Some are designed for use in particular problem areas but some are
called ‘“‘general purpose languages”. Two of the earliest languages de-
veloped (in the late 1950s) were Fortran for numerical computing and Cobol
for commercial applications. In 1960 the language Algol 60 appeared and
although intended for scientific use it paved the way for the general purpose
languages which followed it during the 1960s. Prominent among these are
PL/I, Simula 67, and Algol 68.

In 1971 we have the appearance of Pascal designed by Professor Niklaus
Wirth of Eidgenossische Technische Hochschule in Zurich. Pascal was
intended as a vehicle for teaching programming systematically and to
provide means of efficient implementation on existing computers. In the
eyes of many it is superior to any other programming language in general
use today and its spread throughout the computing world has been exten-
sive. The language, as described in this book, conforms to the BSI/ISO
draft Standard for Pascal.



‘Contents

Introduction vii

Computers and Computing: Some Introductory Remarks ix

Part A SOME FUNDAMENTAL CONCEPTS

1. Programs and Data 3
2. Arithmetic Data Types 37
3. The Data Type char 51
4. Conditional Flow of Control 58
5. The Data Type boolean | 80
6. Loops 95
7. Procedures and Functions 137
8. Program Construction 185

Part B GENERALIZED SCALAR TYPES
9. Symbolic and Subrange Types 211

Part C DATA STRUCTURES

10. Sets 255
11. Records 274
12. Files 288
13. Arrays 311
14. Pointers 363

Part D EXCEPTIONAL CONTROL TRANSFER
15. The Goto-Statement 391



APPENDIXES
Summary of Pascal Syntax
Reserved Words
Predefined Identifiers
Operators

Some Character Sets

TEE 0w p

Exercise Notes and Hints

Index

401
413
414
415
417
419
425



Part A

SOME FUNDAMENTAL CONCEPTS






1

Programs and Data

1.1 Programs
1.1.1 Algorithms, programs, and sequential flow

An “algorithm” is a description of a process expressed as a sequence of
steps. For example, the following constitutes an algorithm:

Step 1. Mix eggs, flour, sugar, margarine, and butter.
Step 2. Place mixture in a cake tin.
Step 3. Bake in a moderate oven for 30 minutes.

In computing we are concerned with presenting algorithms to computers.
We must therefore adopt some notation in which to express our algorithms.
This notation is called the “programming language”. The actions to be
carried out for each step of an algorithm are described by what program-
ming languages call ‘“‘statements”. A complete sequence of statements is
called a ““program’ and when a computer “‘runs’ a program it “obeys” each
statement in turn.

1.1.2 Compilation and execution

The computer does not obey each statement as it is presented; instead ‘it
attempts to translate each statement into machine code. This translation
process (called “compilation”) is carried out by a program written specially
for the purpose. It is possible to define an algorithm for translating from one
specified computer language (the ‘‘source language”) into another (the
“target language’’). Hence it is possible to write a program to perform the
translation. Such a program is called a “compiler”.

A “Pascal compiler” for a particular computer is a program which
translates Pascal programs into the machine code of that computer. Pascal
programs can be run on any computer with a Pascal compiler. The compiler
will usually “list” (i.e. print out) the program, numbering the lines consecu-
tively. Throughout this book programs are often presented in this way: the
line numbers are not supplied by the programmer.

A program may fail to compile. This happens if the program is incomplete
or contains some misuse of the source language. The rules of grammar of a



4

language are called the ‘“syntax” of the language and, in programming
terms, a violation of these constitutes a “syntax error’ or ‘““syntactic error”’.
Thus the English sentence

Programming (with Pascal is, fun.
contains two syntax errors:

1. A comma should not appear between is and fun.
2. Either the opening bracket should not be present or a closing bracket
should follow Pascal.

Notice, as in the second case above, that there may be several ways to
correct a syntax error. Thus a compiler may detect the presence of an error
but be unable to inform you as to the precise location or nature of the error.

A sentence, though syntactically correct, may be meaningless. Consider an
example. A simple English sentence may have the form:

Noun phrase — verb - noun phrase.
Both the following sentences are therefore syntactically correct:

1. A girl recites a poem.
2. A poem recites a girl.

The meaning of the second is somewhat obscure! The meanings of
programs are described as “‘semantics”. More will be said later about
syntactic and semantic errors.

If the compiler detects the presence of syntactic or semantic errors the
computer will make no attempt to run the program. No statement will be
obeyed until the complete program has been successfully compiled. The
program must be corrected and recompiled. When a complete program has
been successfully compiled “‘execution” may be attempted (i.e. the program
can be run). Most computer systems can be arranged to run a program
automatically upon successful compilation. Your particular installation will
have details of this facility.

Errors may occur during execution. For instance, one may (presumably
unintentionally) ask a program to print out the letter following Z in the
alphabet. You will see later why this would not usually be detected until
run-time. If you are running your program from a terminal you may be
allowed to correct some run-time errors as they occur and continue execu-
tion. If you are not using a terminal, program execution will be terminated
in the event of a run-time error. The program must then be corrected,
recompiled, and (when successfully compiled) run again.

1.1.3 Program output

All your programs should generate output and, as mentioned earlier, it will
probably be produced by a terminal or line printer. It is possible that no



5

lower case letters will be available on these devices, in which case all letters
printed will be upper case (i.e. capitals).
In Pascal, output is generated by the

write
and
writeln

procedures. A ‘‘procedure” is a set of instructions which performs some
specified task.

“Parameters”, enclosed within parentheses and separated by commas,
may be supplied to indicate any entities needed for the task. For write and
writeln the parameters specify what is to be printed. The procedures are
supplied by the system; the parameters must be supplied by the user.

Output is discussed in more detail at the end of this chapter; for the
present an introduction to writeln will suffice. No parameters need be
supplied. When the statement

writeln

is obeyed at run-time the print head of the output device will position itself
at the start of the next line. If parameters are supplied, the “value” of each
in turn is printed along the line from left to right; the print head then returns
to the beginning of the next line. In the simplest case the parameters might
be numbers or strings of one or more characters. In Pascal, “‘strings’ are
enclosed within “quotes”, ().

Examples of writeln-statements are as follows:

writeln (2001)

writeln (—9)

writeln (I think therefore I am')

writeln

writeln (‘A prime number:', 17, 'two more:', 5, 7)

th B 9 R

If the five writeln-statements above were obeyed one after another the
output would be:

2001
-9
I think therefore I am

A prime number: 17two more: 5 7

Integers (whole numbers) are output to a predefined “field width”, but
this varies from one compiler to another. The number of spaces preceding
each integer printed will therefore be dependent upon your particular
implementation. No extra spaces are output with strings but, as in examples
3 and 5, spaces may be included within a string.



Numbers with fractional parts are called “real numbers” or simply ‘“‘reals”
and are printed in “standard floating point form”. This comprises a ‘“‘coeffi-
cient” and a ‘“scale factor” separated by the letter E. The form aEf
corresponds to the value a X 10, The coefficient is a number with absolute
magnitude greater than or equal to unity but less than ten, expressed to
some predefined, but implementation dependent, number of decimal places.
The scale factor is a signed integer. Here are some real numbers and,
assuming coefficients contain six decimal places, their standard floating point
equivalents:

Real number S.f.p. form
14.2 1.420000E + 01
—613.94173258 —6.139417E+ 02
3.14159265358979323846 3.141593E + 00
0.00000123456789 1.234568E - 06
97.0 9.700000E + 01

It is possible to output the values of “arithmetic expressions”. The
statement

writeln (4,'+',19,'=" 4+ 19)
produces the output
4+ 19 = 23

Note that digits may be interpreted as characters as well as constituting
integers:

writeln (4 +19=",4+%19)

would produce

4%19= 76

When 4 = 19 appears between quotes it is just a character string (“four”,
“asterisk”, “one”, “nine”); when it appears without quotes it means ‘4
times 197,

Arithmetic expressions are fully explained in Chapter 2. It is also possible

to output the value of a “boolean expression”’; these are described in
Chapter 5.



