The Art of Software
Development

/ Lizhi Xin
EUEs F

University of Science and
Technology of China Press

ERFERAR KRR

2
L
-
.
._l,_j_
. 118
£
2
3

The Art oT SoTtware
Development

/Lizhi Xin
ZURK #F 69

¥
)3
i}
2
A

University of Science and
Technology of China Press

FERFERAKRE R

mEE N

A BigAR T anfeiz i E WA B R BEE AT & UG CRM(%F P X R EED I &
S RE B, FEA A T metadata-driven GuEdEIRsh) S B BTGP R, ABEr KL E:
B—ERFI0E RN R, S =R RN F S MR T AR E A AN B B (BRI SR L AT
WA B L RONSSIS . 2 BERSORR, BUATEW, L E Bk A TEE KRS
Wi B4R .

A B AVER 2 AT R 22 A S E A FRE TR R B — & T B A i
— R B R ARG .

B B RS B (CIP) 8i#E

B R HZ AR = The Art of Software Development . J23C /3 37 & 3. — A B . P EBLF

HAR K H Ikt , 2016. 8
ISBN 978-7-312-03961-4

I. % 1. 3¢ . &EHFE—33x N. TP311.52

o [AR B A54F CIP 8 #% 57 (2016) 55 123997 5

HAR P EREEE R K A
TR A LT 425 96 5,230026

http://press. ustc. edu. cn
EDR LRI SCRENA BRA F
1T P EBEEBAR R DR
2% «EHEHE
FA& 787 mmXx1092 mm 1/16
Elsk 16.25
FH 501 T
R 2016 4 8 A5 1 It
BNk 2016 4 8 A %5 1 IKENK
Efr 49.00 7T

To Mom, Dad., and Sons

About the Author

<author name= "Lizhi Xin" chinesename= "33 &">
<job title= "Consultant">
<myclients>
< client name= "Bank of America" />
< client name= "JP Morgan Chase Bank" />
< client name= "CME Group Inc." />
<client name= "Deloitte and Touche" />
<client name= "Allstate Insurance" />
<client name= "BlueCross BlueShield" />
<client name= "US Department of Argiculture" />
<client name= "John Lang LaSalle" />
< /myclients>
<myproducts url= "http://www.softworkbench.com">
< product name= "Softworkbench Studio" />
<product name= "Stored Procedures Generator" />
< /myproducts>
< /job>
<education>
< graduateschool>
<name> University of Wisconsin - Milwaukee< /name>
< chinesename> BT EE R K% /RIKIHE/D < /chinesename>
< /graduateschool>
<undergraduateschool>
<name> University of Science and Technology of China< /name>
< chinesename> P EBlZ¥IFHARKE < /chinesename>
< /undergraduateschool>
<highschool>
<name> High School Affiliated to Renmin University of China< /name>
<chinesename> AKXMffH1< /chinesename>
< /highschool>
< /education>
< /author>

Preface

Software development is more art than science, more craft than
engineering. Programming is easy because programming is writing code from
well-defined specifications. Software development is hard because software
development has to define the problem in the first place, the difficult part of
software development is to figure out what to build, not how to build it.
Software development is not just writing code, software development is about
problem solving and decision making.

Programming languages come and go. Methodologies may change. Yet
the principles of software development, and the art of applying it, have
remained constant for a long period of time.

Ability to master the principles of software development: in my opinion,
your ability to understand and apply basic principles to software developments
is the ability that separates good developers from great developers.

This book shows how 1 applied the basic principles of software
development to solving problems and making design decisions for a simplified
CRM (Customer Relationship Management) application. Knowledge and
experiences play a major role in developing software products. Knowledge can
be acquired by reading books; however, experiences can only be gained by
hands-on activities. I hope you can learn some useful knowledge from this
book and apply the knowledge you learned to the projects you are working on
and gain the experiences yourself.

In Chinese swordsman fiction, three levels of swordsmanship are used to
describe the road to mastery of the art. The first level, swordsman, is good at
using swords; the second level, swordsmaster, is good at using any object as
swords, for example, a dead branch; the third level, swordsgod, is the level
where the sword and the swordsman become one: no sword needed at all,

swordsgod defeats their enemies using Tao force.

i The Art of Software Development

I found that these three levels can be applied easily to the art of software
development as follows:

The first level, developers are good at one programming language and
understand the fundamentals of software design. They never really learn the
art of software development, they merely know how to program.

The second level, developers are good at not only different programming
languages but also different development methodologies; also they know
design patterns and application frameworks. At the second level, developers
realize that programming language is just syntax, a tool to solve problems
from the users.

The third level, developers realize that at the heart of software
development is philosophies of thinking and learning; they begin to realize
that developing software is just an extension of the way they think in real life.
They will not care about particular programming languages or methodologies,
and can switch between them easily. They know how to deal with complexities
and changes using basic principles of software development.

Let’'s walk together in the software development journey from the
swordsman to the swordsgod!

Acknowledgements

I have been working on this book, in one form or another, for more than
three years, and lots of people have helped and supported me in lots of ways.

I'd like to take this page to thank all those who made this book possible.
First, I thank my Mom and Dad for the inspiration, love and support they
give me. I'd never make it far without them. I also want to thank my two
wonderful boys for the help when I am writing; actually a lot of ideas and
thinking regarding this book happened at those cold ice rinks while my two
boys have fun playing ice hockey and figure skating.

Special thanks are due to University of Science and Technology of China
Press.

Contents

DROBAGE o veiwe s eions s st s ass o5 A HASHD SRS A SN S SN NS HeS £4 R Sy Aa sy B (i)
ACKNOWIEAZEIMENES ++++++++essserermnernstn ettt ee ettt i)
R s T ——————————— e PR (1)
1.1 HiStory Of COMPUEINE «w+-rerersrseoremsssssssmnssitsnitanttsias ittt (1)
1.1.1 InfOrmation TREOTY «-+seeeesssreesrmrnmmmmmnureinitseeniitteeibtte s (2)
1.1.2 Turing Machine «-eeeeeessremmmmmmsitinitistinits st (3)
1.1.9 Voii Neamaim Machifte s sssssnussesonmsmnmborsossransssssssmsvsmmss (4)

1.2 Software DevelOPMENt — «+ssesssrersssrrrstrmuusttiustisiii . (5)
1.2.1 COMPIEXIty +veeersremsssreessssreetstait sttt (5)
1.2.2 Is Software Development Science or Art, Engineering or Craft? ------ (8)
1.2.3 The Search for Silver Bullet «e«-eseesreeeesarermreemtrmniieimiiaeieenes e 1o
1.3 The ATUGE WIE sresssasanamesesss s aes s s g s s wesmesemaies an
1.2.5 Build OF BUy? eeeeeessrsssursimmmiiiiiitnis s 1D
1.2.6 The Art of Software DevelOPMmEnt «-sseeeessreesemsmsesmimisriniinsanns (14)

1.3 Case Study: SimpleCRM ApPPLCAtion «++sss+sssseeessssssnssssinssiniiiiiiiaininns (18)

2 PHNCIPIES +vveeesveeessssnmestotmnttiittir et 2D
2.1 KISS Principle «e+++seeeeesesuessammunrennitttitiie sttt (22)
B G T PRI mmne-osiessrsnes s ks oA s 0 o NS R SR B G R AT (25)

G 10 KUSTABEIGN <o s s e P s s B s AR S e (38)
2.1.3 Generalization .. (66)

2.2 Knowledge Factory .. (72)
2.2.1 Data, Information and Knowledge «+-s«seseseeeemsmnremminnmniniinnnn (73)
2.2.2 Knowledge Factory «:+sessssssssereesersrmimtniniiiiiiiiiitii, (74)

2.3 PIOLOLYPE «++seesseesssnssssnsits sttt ittt sttt (76)
2.3.1 User Interface Prototyping «++++--+cteessssrrseremmimniirersiniiessesianenn (78)
2.3.2 Application Prototyping .. (79)

Vi The Art of Software Development

2.3.3 Data ProtOtyping «««es«sssssessssssnsssssusunummmmmmmusnsniinssnnssssnnnassnnanan (80)
2.4 Technology, Process and People «««««+++sssssssssuumnmmmmmnnmmnnnunnnnnnnnnnsnnnnnnnns (81)
2.4.1 TEChNOLOZY +++rrwsrerssnnnnsnnnmnsuunssnunsiussustsssssnses st (82)
D 4.9 PrOTESS sessssssssmbnssmansss vasams e assdis hass s srsss sussnsisss ypide s (93)
2.4.3 PEOPIE rrrerrrrrertnntintt (99)
2.5 SUIMMITIATY +++r+esernesnssnnnnnmuntnestssssstsessass s st s e s e e s s s s b s es s (104)
REQUITEIMIENES ++++vvrvrrrresersnesernnstetianttie ittt ittt et se s ee e e e s (106)
3.1 Requirements EIiCitation ««+«+ssssesssremmmmmmmmmmmmmmmiiiieiiiiiniiian (107)
3.1.1 Joint Application Development (JAD) «+++sesesssesrsenmmmmmmmmmmmmmmiiennn. (107)
3.1.2 Other Elicitation Techniques —«+-+-«ssssessessseeesrmmmmmimimeeaeiiaiiia. (11D)
3.2 Requirements Definition ««osss+sserrrrerenmmimmminiieiiiiiin (112)
B9 1 IGE CHRE v vaivmiiswomoe »amons xitnivsato wava i 05 SRR AN o BRSNS AR SN (113)
3.9 2 Busificss Rile «oswes vissess s ivasn s i iaes ise s sdminssvis s saavsawios (119)
3.2.3 User’s Role and PermiSSion «««-rererseeseseracarsrnerenmeuentemmereacnmsenes (120)
3.3 Requirements Validation «-++rsesssrerrrmeermemiiiniii i (121)
ADALYSES rrrrerrrrrnestetnu et (122)
4.1 Functional Specification ««sseesessersreesmnimiii 123)
4.2 Non-Functional Specification «+-++++ssssssseesereemiimimiiiiii . (132)
4.3 Security Access COMEIO] «=«sssreteerrerrrmmumiiiintrttttiitii ettt (138)
£.8.1 A0tHeftication srsesesessssssusessvosmansvesssnasse sasssssossovssns ssnsomsisss shsas (139)
4.8.2 Authorization sesessmemssssessmsssss sevnsssonss sesesis yossss wusos sHass Gsameissaaees oos (139)
DIESIGN +vvvresrsrssssssssie st (144)
5.1 High-Level Design (Architectural) «+++s«+++seeeeremmmmmmmmimiiii. (146)
5.2 DeSign PrOCESS — +++rerrerersssrsasessertmmmiiiiiiien ettt (148)
5.3 Low-Level Design (Detailed) «oo-reerereerrrsmmimmmemeeriiiiii (149)
5.3.1 UI DESIGN rereererrerrerrmnnumientnetttitiiiiiii ettt (150)
5.3.2 Data Access Design «eeeerereereeermmmmiiiii (154)
5.3.3 Domain DESign «++eeesererssrresmummmuumtitiiitii (165)
COTISTITICTION v ot se:ins +hiss B Rsasn Ao R 5 a0 S PR 1 o AR S TS A Wi (175)
BT TUser Titerface wwsemsassmss o eis s imnsssamie S5 ovons s oamam i sess s ass dsanvss 175)
6.0 TOUTA ATCCERS bt m s s s S msa sty s i o e A ki S AR AT (182)

6. 2 . 1 Ob]ect_Relatlonal Mapplng .. (182)

Contents Vii

6 ! 2 " 2 Dlstrlbuted Transactlon Seerce .. (191)

6.3 IDOIMAIN trsrrerrrerrerresssasteetiertsretsessessarsssssessssassssensssssssssessssssssssanssses (200)

7T CoONCIUSION srrrrrrrrrrrrereraseiaitieittsaiteteetsttaetsaseataeserseetassesstssssasassasesessnsnns (221)
7.1 Books .. (222)

7. 2 Pct Projects ... (223)
7. 3 Future ... (224)

. 3_ 1 Intentlona] Software ... (224)
7.3.2 Transparent Computing .. (225)
7.3.3 Can the end users write software themselves? ereseereeeeeceriniinnene. (225)
Glossary .. (228)
References -- (240)

1 Introduction

If you know both yourself and your enemy, you can win numerous battles without
jeopardy .

— Sun Wu (544 BC)

1.1 History of Computing

Computing is intimately tied to the representation of numbers. Eventually, the
concept of numbers became concrete, and advances in the numeral system and
mathematical notation eventually led to the discovery of mathematic operations such as
addition, subtraction, multiplication, division, squaring, square root, and so forth.

The earliest known tool for use in computation was abacus shown in Figure 1. 1. The
Chinese invented a more sophisticated abacus from around the 2nd century BC known as
Suan Pan. Usually, Suan Pan is about 20 cm tall and it comes in various widths depending
on the application. It usually has more than seven rods. There are two beads on each rod
in the upper deck and five beads on each rod in the bottom deck. This configuration is

used for both decimal and hexadecimal computing. The beads are counted by moving

Figure 1.1 A Chinese Abacus (Suan Pan)

2 The Art of Software Development

them up or down towards the beam. Suan Pan can be used for functions other than
counting; there are very efficient Suan Pan techniques have been developed to do
multiplication, division, addition, subtraction, square root operations at high speed.

The Antikythera mechanism is believed to be the earliest known mechanical analog
computer. It was designed to predict astronomical positions and eclipses. It was
discovered in 1901 in the Antikythera wreck off the Greek island of Antikythera,
between Kythera and Crete, and has been dated back to circa 100 BC.

In 1837 Charles Babbage first described his Analytical Engine which is accepted as
the first design for a modern computer. The analytical engine had expandable memory,
an arithmetic unit, and logic processing capabilities able to interpret a programming
language with loops and conditional branching. The Analytical Engine was never built
because it was too complicated to be implemented by the technologies of the 19th
century. It had to wait for the inventions of transistors and integrated circuits to build
the analytical engine, a century later. Ada Lovelace who devised algorithms for Charles
Babbage’s Analytical Engine was an English mathematician. She is often regarded as the

first computer programmer.
1.1.1 Information Theory

In 1703, Gottfried Wilhelm Leibnitz developed logic in a formal, mathematical
sense with his writings on the binary numeral system. In his system, the ones and zeros
also represent true and false or on and off states. But it took more than a century before
George Boole published his Boolean algebra in 1854 with a complete system that allowed
computational processes to be mathematically modeled.

In 1948, Claude Shannon published his classic paper “A Mathematical Theory of
Communication” in the Bell Systems Technical Journal , a landmark that established the
discipline of information theory.

Shannon emphasized that “The fundamental problem of communication is that of
reproducing at one point either exactly or approximately a message selected at another
point.” Shannon also realized that the content of the message was irrelevant to its
transmission and bits can be used as a new way of representing the most fundamental unit
of information.

It is mainly because of Shannon that the binary standard has been adopted for
sending and receiving information, earning him the title “The Father of the Digital
Age”.

Any real-world object is seen to be able to be reduced to bits. At the smallest unit in

the computer, information is stored as bits and bytes. Let’s look at how that works.

1 Introduction 3

Bit
+ A bit stores just a 0 or 1.
« Like an atom, the smallest unit of storage.
+ Everything in a computer is 0’s and 1’s.
Byte

* One byte = grouping of 8 bits (e.g. 1101011).
+ 8 bits can make 256 different patterns.

+ One byte can store one letter (e.g. ‘c’).
1.1.2 Turing Machine

1936 was a key year for computer science. Alan Turing and Alonzo Church
independently, and also together, introduced the formalization of an algorithm, with
limits on what can be computed, and a “purely mechanical” model for computing.

These topics are covered by what is now called the Church-Turing thesis, a
hypothesis about the nature of mechanical calculation devices, such as electronic
computers. The thesis claims that any calculation that is possible can be performed by an
algorithm running on a computer, provided that sufficient time and storage space are
available.

In his classic paper “On Computable Numbers, with an Application to the
Entscheidungs Problem” in 1937, Turing described that:

All details sets of instructions that can be carried out by a human calculator

can also be carried out by a suitably defined simple machine .

It is known then as the Turing Machine.

Turing machines are not physical objects, but mathematical ones. They show if and
how any given algorithm can be computed. Turing machines are state machines, where a
state represents a position in a graph. State machines use various states, or graph
positions, to determine the outcome of the algorithm.

The Turing machine mathematically models a machine that mechanically operates on a
tape. There are symbols on this tape, which the machine can read and write, one at a time,
using a tape head. Operation is fully determined by a finite set of elementary instructions
such as “in state 42, if the symbol seen is 0, write 1; if the symbol seen is 1, change into
state 17; in state 17, if the symbol seen is 0, write a 1 and change to state 6”, etc.

More precisely, a Turing machine consists of

1. A tape divided into cells, one next to the other. Each cell contains a symbol from

some finite alphabets.

4 The Art of Software Development

2. A head that can read and write symbols on the tape and move the tape left and
right (and only one) cell at a time.
3. A finite-state control unit that stores the state of the Turing machine at a finite

table of instructions (occasionally called an action table) .

1.1.3 Von Neumann Machine

In 1946, a model for computer architecture was introduced and became known as
von Neumann architecture. The Von Neumann model derives from a 1945 computer
architecture description by the mathematician and physicist John von Neumann and
others, First Draft of a Report on the EDVAC. This describes a design architecture for
an electronic digital computer with subdivisions of a processing unit consisting of an
arithmetic logic unit and processor registers, a control unit containing and instruction
register and program counter, a memory to store both data and instructions, external

mass storage, and input and output mechanisms shown in Figure 1. 2.

Accumulator

Figure 1.2 Von Neumann Machine Architecture

Von Neumann architecture has evolved to mean a stored-program computer. A
stored-program digital computer is one that keeps its programmed instructions, as well as
its data, in read-write, random-access memory (RAM). Stored-program computers were
advancement over the program-controlled computers.

» A stored-program computer includes by design an instruction set and can store in

memory a set of instructions (a program) that details the computation.

« A stored-program design allows for self-modifying code.

On a large scale, the ability to treat instructions as data is what makes assemblers,
compilers and other automated programming tools possible. One can “write programs
which write programs”.

1 Introduction 5

1.2 Software Development

This book is about software development; let’s first take a look at the definition of
software and software development at Wikipedia .
Computer software, or just software, is any set of machine-readable
instructions that directs a computer’s processor to perform specific operations .

Software development is the development of a software product .
1.2.1 Complexity

Ask a programmer, an architect, a project manager, a business analyst or almost
anyone who knows anything about software development and you will get various answers
along the lines of :

» Poorly document requirements.
« Changing requirements.

+ Insufficient analysis.

+ Poor communication.

» Poor estimates.

» Unrealistic deadlines.

If you look at all these answers, you can see that the root cause is simply due to
complexity. Coping with change just magnifies the complexity. The real problem of
software development is dealing with complexity and change. Over the last thirty years,
many different paradigms have been created in attempt to solve the software crisis, still
there is no single solution to the crisis. The software industry acts as if it were a fashion
industry by chasing new methodologies, techniques and tools.

Complexity and uncertainty are two biggest enemies of software development.
Unlike enemies in a real war, complexity and uncertainty have no obvious weaknesses,
and cannot be deceived. Instead, software projects have a tendency of deceiving us.
More often than not, our schedules are optimistic, and we usually under-estimate the
complexity and effort required for developments and testing tasks.

Unlike a real enemy, complexity and uncertainty will find all your weaknesses. The
only way to defeat complexity is through understanding the requirement as well as
simplifying the solution. The big difference between a great general and a good general is

knowledge, and great generals are always thinking and trying to understand their enemy.

6 The Art of Software Development

You can say the same thing about programmers; the great programmers are always trying
to understand the requirement.

Complexity was recognized as a significant challenge in software development. The
complexity of software can be analyzed from the aspects of structure complexity, state
complexity and behavioral complexity. For example, an e-commerce application as
shown in Figure 1.3 includes customer, order, product objects as well as order entry
process, order fulfillment process and payment process, also an order can either be

approved or be rejected, or be in pending state.

States of Order:

1. Approved
2. Rejected
3. Pending

N

—

payment process ‘;Wébfse:vice il
_______ J (Credit Card)

order entry process

1 0..*

order fulfillment 1
process L.*

Figure 1.3 E-Commerce Software Applications

Software is a discrete system which can be described as objects, relations, processes,
constraints and interactions with external system. The set theory can be used to describe
software system as below:

Software System= (O, R, P, C,)
where

O is a set of objects of the system, O={0;, 0z, ***5 0.}

R is a set of relations between pairs of the objects in the system, R={r;, 1y, *-,
Tn};

P is a set of processes (or functions), P={pi, pz» ***» Pu’;

C is a set of constraints on the objects and processes, C={cy, C2 ***» Cu}3

I is a set of interactions with external systems, 1= {i;, iz, ***, i,}.

A software system, S= (O, R, P, C, D) can be illustrated as shown in Figure 1. 4.

Now let’s takc a look at structure complexity first. Structure complcxity is
determined not only by the number of objects, but also by the relations among the

objects. The structure of software system is a set of objects and relations, if we define,

