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Preface

The aim of this book 1s to outline the physics of image formation. electron
specimen interactions, imaging modes, the interpretation of micrograis
and the use of quantitative modes in scanning electron microscopy (SEM
forms a counterpart to Transmission Electron Microscopy (Vol. 36 o1 i
Springer Series in Optical Sciences). The book evolved irom leeiv: s
delivered at the University of Minster and from a German text eniiic
Raster-Elektronenmikroskopie (Springer-Verlag), published in collaborn o
with my colleague Gerhard Pfefferkorn.

In the introductory chapter, the principies of the SEM and of electr
specimen interactions are described, the most important imaging modes aid
their associated contrast are summarized, and general aspects of elemental
analysis by x-ray and Auger electron emission are discussed.

The eleciron gun and electron optics are discussed in Chap. 2 1o order ¢
show how an eleciron probe of small diameter can be formed, how the ele
tron beam can be blanked at high frequencies for time-resoiving exne:
iments and what problems have to be taken into account when focusing,

In Chap. 3, elastic and inelastic scattering is discussed in detail. sualiv.
the elastic scattering is described as Rutherford scattering at a screened n-
cleus but we show that Mott’s scattering theory is more correct and that large
differences can occur; this has an effect on SEM resuits in which elastic scai-
tering is involved. The inelastic scattering causes deceleration of the ejco.
trons and we present the reasoning behind the Bethe continucus-slowing-
down approximation in detail because it is the most important mode! used
in diffusion models and in the discussion of specimen damage processes. [n
Chap. 4, the experimental findings and the theoretical models concerning
backscattered and secondary electrons and x-ray and Auger electron ¢niis-
sion are outlined. ’

Chapter 5 describes. the detector systems employved for secondary il
backscattered electrons and their signal-to-noise ratios, eleciron spc.-
trometers for energy filtering, x-ray spectrometers and light eoliection svs-
tems for cathodoluminescence. The chapter ends with a discussion ol ihe
problems of image recording, and of analogue and digital image processi o,

Chapter 6 presents the typical types of contrast that can be created with
secondary and backscattered electrons and demonsirates how the phyvsics of
electron-specimen interactions can be used together with an improved de-
tector strategy to make SEM more quantitative. In Chap. 7, the eleciron-
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beam-induced current (EBIC) mode for semiconductors and its capacity for
measuring semiconductor and device parameters are outlined. A section fol-
lows on cathodoluminescence and various other modes, of which the ther-
mal-wave acoustic mode is likely to attract considerable interest.

The determination of crystal structure and orientation from electron
channelling patterns (ECP), electron back-scattering patterns (EBSP) and
x-ray Kossel patterns is described in Chap. 8, which opens with a brief re-
view of the kinematical and dynamical theories of electron diffraction and of
Bloch waves as these are essential for an understanding of these diffraction
effects at solid specimens. The final chapter evaluates the correction pro-
cedures used to give quantitative information about elemental concentra-
tions by x-ray microanalysis and discusses the problems that can arise when
analysing tilted specimens, specimen coatings, particles on substrates and
biological tissues. It ends with a survey of different types of x-ray imaging=
modes.

Electron microscopists who first use the TEM are much more conscious
of the problems of image interpretation because the difference between
electron and light microscopy is obvious. A SEM produces such beautiful
images, which are in some respects comparable to illumination with light,
that many SEM users do not give much thought to the origin of the contrast.
However, when the contrast needs to be discussed in more detail and the
SEM signals are to be used more quantitatively, it becomes necessary to
know more about the physics of SEM. It is the aim of this book to provide
this knowledge together with ample references which cannot, however, be
complete.

Just as for the book about transmission electron microscopy, a special
acknowledgement is due to P. W. Hawkes for revising the English text and to
K. Brinkmann and Mrs. R. Dingerdissen for preparing the figures.

Miinster, November 1984 L. Reimer
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1. Introduction

1.1 Principle of the Scanning Electron Microscope

The principle of the scanning electron microscope (SEM) is shown in Fig. 1.1.
Electrons from a thermionic or field-emission cathode are accelerated by a
voltage of 1--50 kV between cathode and anode. The smallest beam cross-section
at the gun — the crossover — with a diameter of the order of 10-50 um for
thermionic and 10-100 nm for field-emission guns, is demagnified by a two- or
three-stage electron lens system, so that an electron probe of diameter 1-10nm
carrying an electron probe current of 10710~ '2A is formed at the specimen
surface. For modes of operation that need a higher electron-probe current of
107°-10" %A, the electron-probe diameter increases to 0.1-1 pm.

The final probe-forming lens has to operate with a relatively long working
distance, that is, the distance between specimen and lower pole-piece, so that the
various particles and quanta emitted can be collected with the desired efficiency
and if necessary. with zero magnetic field at the specimen. This requirement
increases the spherical aberration of the probe-forming lens and, therefore, the
smallest attainable electron-probe size. Electron-probe current, aperture and
size can all be varied but not independently by changing the excitations of the
first condenser lenses and the aperture-limiting diaphragm in the iast probe-
forming lens. Apertures of the order of ten milliradians are used for routine work
and high resolution. One to two orders of magnitude smaller apertures are
necessary to increase the depth of focus and to improve the angular resolution in
electron channelling patterns.

A deflection coil system in front of the last lens scans the electron probe in
a raster across the specimen and in synchronism with the electron beam of a
separate cathode-ray tube (CRT). The intensity of the CRT is modulated by one
of the signals recorded (Sect. 1.3) to form an image. The magnification can be
increased simply by decreasing the scan-coil current and keeping the image size
of 10 x 10cm? on the CRT constant. Figure 1.2 shows a series of images with
increasing magnification.

Further beam-deflection modes involve rocking of the electron beam when
the electron probe is at rest and the angle of incidence is raster-scanned to form
electron channelling patterns for crystal analysis: periodic change of the angle of
incidence for recording stereo images at TV frequencies: and periodic blanking
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or chopping of the electron beam up to frequencies in the CHz region for the
stroboscopic modes and time-resolved signals.

The electron-probe aperture, that is, the semi-apex angle of the convergent
cone of electron trajectories, is small — of the order of a few tens of milliradians —
with the result that the depth of focusis much larger than in light microscopy.
Specimens with large variations in depth can be sharply imaged even at the
lowest magnification of 20-50 times (Fig. 1.3).

Another advantage of SEM is the wide variety of electron-specimen
interactions that can be used to form an image and to furnish qualitative and
quantitative informaticn.

The large depth of focus, the excellent contrast and the straightforward
preparation of solid specimens are the reasons for the considerable success and
widespread use of scanning electron microscopy in the imaging of surfaces over
the past decades [1.2-11]. However, we should keep in mind that the imaging of
surface topography by platinum-shadowed carbon replicas in a transmission



