Cambridge Computer Science Texts - 12

Programming
via Pascal

J. S. ROHL and H. J. BARRETT.

Programming via Pascal

j.S. ROHL and H.J. BARRETT

Department of Computer Science
Universiry of Western Australia

CAMBRIDGE UNIVERSITY PRESS
Cumbridge

London New York New Rochelle
Melbourne Svdney

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

32 East 57th Street, New York, NY 10022, USA

296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia

© Cambridge University Press 1980
First published 1980

Printed in the United States of America

Library of Congress Cataloguing in publication data

Rohl, Jeffrey Soden

Programming via Pascal

Includes index

1. PASCAL (Computer program language) I. Barrett,
HJ., joint author. II. Title.

QA76.73.P2R63 001.6'424 79-17433

ISBN 052122628 7 hard covers
ISBN 052129583 1 paperback

PREFACE

What, another book on Pascal! What can you possibly add which has not been said
already? These questions have been foremost in our minds for some time now. When
we decided to start this project there were no acceptable textbooks. We were
obliged to use Jensen & Wirth’s User Manual & Report for a purpose for which it
was not designed, and for which it is clearly inadequate. Since then there has been
a steady stream of books each apparently better than its predecessor. So why then
did we persevere?

Apart from the obvious democratic motive of providing as broad a selection of
books as possible for the potential users, we felt that our approach offered certain
advantages.

The book is designed not as a reference book to be used to back up a lecture
course, but as a textbook around which a course might be constructed. With a few
exceptions, each chapter covers the material appropriate to one 45 to 50 minute
lecture. [The exceptions are generally of nearly double the length.] As appropriate,
and especially in the early chapters, we follow the text with a few small exercises
based on the material of the chapter. Thus the designer of a course has a number
of options: he can give a lecture on the text; he can give a lecture on material com-
plementary to the text; he can ask the students to pre-read a chapter and hold a
tutorial rather than a lecture; and, of course, he can simply use it as background
reading.

We hope that with this approach the book will be useful for students studying
on their own, with the short chapters and the consequently increased frequency
of exercises. /

A picture may not be worth a thousand words, but it certainly helps in crys-
tallising important concepts and relationships. We use them quite frequently:
structure diagrams, flow diagrams, store layout pictures and syntax diagrams. The
last two deserve special mention.

We believe that a Pascal program is best understood in terms of the Pascal
machine on which it runs. Consequently, throughout the book we give illustra-
tions of the machine (in particular its store) to underline new facilities as they
are introduced.

The most obvious difference between this book and others lies in the syntax
diagrams. We believe that the function of syntax diagrams in a textbook is to
communicate as much information about the syntax (and implicitly the seman-
tics) as possible. This is rather different from their function in compiler-writing
which is to provide a skeleton around which a compiler can be constructed. These
two functions are not mutually exclusive and it is possible to construct syntax

Xi

diagrams almost anywhere in the spectrum. It is our view that the syntax dia-
grams of the User Manual and Report are at the compiler-writing end of the
spectrum: we have constructed a set which, at the price of an increase in size,

is much nearer the textbook end. We are not completely satisfied with them
(especially in the context sensitive parts of the language) and any suggestions

for improvements would be greatly welcomed. During the production stage a
proposed standard for Pascal was published for comment. Two of its points have
found their way into this book. Firstly, the classification of the types of variable
has been altered to reflect more accurately the distinction between the real types
and the ordinal types. This has no effect on the language, only on its description.
Secondly, and this does change the language, when a procedure is used as a para-
meter its whole heading must be given. Since this proposal has not, and may not,
be accepted, we have noted the point in the text where this facility is described.

Another obvious difference is the reduced emphasis in this book on the top-
down design technique. There are many reasons for this: partly it is because of
the way the Pascal concepts are introduced; partly it is because we believe that
top-down design is a basic human technique and that the current obsession with
it in programming is due to our embarrassment at our poor performance in the
past; partly it is because we feel that it is a technique to be learned by practice
rather than by reading about it. One example is perhaps too few, and in our
courses we give a second, much larger example after procedures have been intro-
duced. [The current one is an interpreter at the bit level of a computer designed
in an associated course.] It seemed excessive to add the 50 or so pages required
to describe the top-down design and testing of this program: far better for the
lecturer to do it dynamically for a program which is relevant to his class.

It has long since been realised that programming is not a subject that can be
adequately covered in a single course. A first course has to be supplemented by
a second, and possibly a third course. With this in mind we have planned two
books of which the present one is the first. This decision has given us flexibility
in the way material is presented. We have decided that the second book will con-
centrate on algorithms and data structures. This book, then, concentrates on the
construction of programs in which the underlying algorithms are fairly simple.
The problems presented are essentially data processing ones using that phrase in
its most general sense. _ .

Even so we made the (not easy) decision to cover all of Pascal, including poin-
ters and sets whose full potential can be tapped only in the context of advanced
data structures. Thus thec book is a complete primer for Pascal.

The manuscript of this book has been read by a number of our colleagues who
have made many invaluable comments, which have caused us to make many
important improvements. We are particularly grateful to Andrew Lister of the
University of Queensland, Rodney Topor of Monash University, Jan Hext of the
University of Sydney and John Pollard of the Australian Atomic Energy
Commission.

Nevertheless writing a book calls up a great deal of inner resources so that,
although feedback from our current students has been very useful, our real debt
is to those in Manchester and Stafford who were our teachers, our colleagues
and our students. Great, too. has been the contribution of Chris Ward and Lyn
McGrath who typed the manuscript, and our famiiies who supported us.

Perth, November 1978 J.S. Rohl
H.J. Barrett

Xii

CONTENTS

I — —
W R

ISR ESISE SR
AN B W —

Preface

Introduction

A simple example: payroll
The compiler

Running the program

Arithmetic and assignment

Variables and variable declarations

Types

Constants

Expressions

Assignments

The importance of assignment statements.and
expressions

The syntax of Pascal
Syntax diagrams
Backus Naur Form

Alternatives

If statements

Boolean expressions
Compound statements

The number spiral problem
A problem of interpretation
The case statement

Repetition

Extending the payroll diagram to deal with all
employees ‘

Loops as a fundamental building block
Nested loops or loops within loops

Using the control variable within the loop
The specification of the for statement

——— —
NWN — O \O

19

22
22
28

31
31
33
35
35
38
39

45

45
47
48
49
51

oo
S W -

NNNNNN
VAW -

90 00 00 00 00 00 00
(o) WU, T NRLOS I NS I

101010100100V 0VY
O 00N H W —

10.1
10.2

11

11.1
11.2
11.3

12

12.1
12.2
12.3

vi

Programming aids
Choice of identifiers
Layout of the program
Comments

Flow diagrams

Output

Strings

Field width

The output buffer
Carriage control
The payroll again

Arrays

One application of arrays - a simple sorting program
Printing arrays

Syntax

Index bounds

Arrays with more than one dimension

The importance of arrays

Iteration and Booleans

The while statement

The while statement and the for statement
The repeat statement

- A strategy for writing loops

The type Boolean

Operations on Booleans

Examples

The evaluation of Booleans

The while statement or the repeat statement

Program design
Top-down design
Bottom-up design

Characters

The type char
Operations on characters
Two examples

Testing and debugging

Testing assignment statements
Testing compound statements
Testing conditional statements

54
54
55
58
58

63

65
67
69
70

73
74
78
78
80
81
82

89

91
93
94
95
96
100
102
104

108
108
115

117
117
118
122

126
126
127
127

12.4
12.5
12.6
12.7
12.8

13

£3.1
13.2
13.3
13.4
13.5
13.6

14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

15

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
16

16.1
16.2

17
17.1

17.2

Testing repetitive statements

Other considerations

Checking that the algorithm is implemented

If all else fails: debug printing

Correcting the program that is found to be faulty

Input

An example

The procedure readln

The buffer variable inputt

Some methods of reading in repetitive data
The line structure of data

Data checking

Constants and types

The payroll problem again
Separation of distinct activities
Use of tables

Constant definitions

Type definitions

Enumerated types

Subrange types

An example

Repetitive statements with enumerated and
subrange variables

Records and structures in general
Records

Accessing fields of a record

Record expressions and assignments
Records of records, records of arrays
The with statement

The payroll program

Record variants

Array expressions and assignments
Packed arrays and records

Procedures
Structuring the payroll program with procedures
Procedures in relation to robustness

Parameters

‘Parameters as a means of increasing relative

independence of procedures
Variable parameters and value parameters

128
130
131
132
132

137
137
139
140
140
142
143

146
146
147
149
150
153
154
157
159

160

162
162
164
166
166
168
170
172
175
176

181
181
188
191

191
194

vii

17.3

17.4
17.5

17.6
17.7

18

18.1
18.2
18.3

18.4
18.5
18.6
18.7

19

19.1
19.2
19.3
19.4
19.5
19.6
19.7

20

20.1
20.2
20.3
20.4
20.5
20.6

21

21.1
21.2
21.3

22

22.1
22.2
223
22.4

22.5

viii

Parameters as a means of increasing the
general usefulness of a procedure

Storage allocation

Factors affecting the choice of variable or
value parameters

Parameters or global variables

Procedures as parameters

Program structure and scope

The nesting of procedures

Static structure diagrams

The accessibility of variables and the
principle of deepest declaration

Scope

Accessing procedures and forward references
Dynamic structure diagrams

Procedures and top-down design

Functions and subroutines

Functions

The utility of functions

A warning and a restriction

The notion of a subroutine

The writing of subroutines

Procedures and functions as parameters
The testing of subroutines

Recursion

Simple recursive functions

A more complicated recursive function
A counter-example

Recursive procedures

Simulating nested loops

The power of recursion

Sets

The set types
Operations on sets
Examples

Files

File definitions
Creating a file
Accessing a file
External files
Text files

195
200

203
204
208

209
210
211

211
213
213
215
216

219
219
224
225
225
226
229
230

232
232
235
236
237
239
242

245
245
246
250

254
254
255
256
258
260

22.6
22.7
22.8

23

23.1
23.2
23.3
234
23.5

24
24.1
242
24.3
24.4
24.5
24.6
24.7
24.8
24.9
24.10
24.11
24.12
24.13
24.14

Input and output
A more typical example
Arrays or files?

Pointers

Dynamic variables and pointers
Operations on pointers

An example

Managing the heap

The power of the pointer

Efficiency

Simplification of expressions

Elimination of common sub-expressions
Operator strength reduction

Moving constants outside loops
Simplification of loop termination criteria
Coalescing loops

Replacement of a loop by a formula

An example

Operand strength reduction

Saving time by accessing stored information
Symmetry

Balanced solutions

The goto statement

Is optimisation worth it?

Appendix 1 The syntax of Pascal

Appendix 2 Standard Pascal identifiers

Index

261
261
262

267
267
268
272
274

275

277
277
278
279
280
281
282
283
284
289
290
291
294
295
297

299
320
325

ix

1
INTRODUCTION

& a

The general-purpose computer is a very powerful device, its power
deriving from the fact that it can be turned into a machine for per-
forming any particular specific calculating task at will. This trans-
formation is effected by providing the computer with a program, T
which is a set of instructions defining precisely the calculation to be
performed. The language in which a program is expressed is called

a programming language. There are a number of these in existence
and the one this book uses is called Pascal.

Input Output
Store Arith-
< metic
. unit
Control .

Fig. 1.1 A broad schematic of a computer

Let us look at the broad structure of a computer. It consists of
five components as shown in Fig. 1.1. The program is held in part of
the store and we assume that it is there initially. (How it gets there
is something we will consider later in this chapter.) The machine is
always under the control of the control unit which has a very simple
operation: it takes an instruction from the store and causes it to be
obeyed; then it takes the next instruction from the store and causes
it to be obeyed; and so on. The instructions may:

(i) cause some data to be read into the (other part of the) store,
(ii) cause some appropriate operations to take place on data held

in the store,
t As technical terms are introduced they will appear in italics.

(iii) cause some answers to be printed out from the store.

1.1 A simple example: payroll

Let us illustrate this by a simple example, a very simplified simple
example. Fig. 1.2 gives a program in Pascal which will calculate the
gross pay of one employee, given the number of hours he works and
his rate of pay.

More precisely, the program will read in three numbers, an integer
representing his personal code number, and two real numbers repre-
senting the number of hours worked (a reai allows fractions of an
hour to be recorded) and the rate of pay in dollars respectively;
calculate from this the gross pay; and print out two numbers, the
personal code number and the gross pay. The overtime pay provisions
are quite simple: overtime is paid at time and a half after 37% hours
have been worked. Further, the program assumes that the employee
works at least the regulation 37% hours.

program payroll (input, output),

var code : integer;, hours, rate, gross, overtime : real;
begin

read (code, hours, rate),

overtime := hours - 37.5,

gross = 37.5%*rate + overtime* [.5%* rate,
write (code, gross)
end.

Fig. 1.2 A very simple payroll program

The program, as written, follows very precise rules (and much of this
book is concermned with specifying these rules) but for the moment we
are concerned only with expiaining how the computer works.

Let us assume therefore that this program is in the machine and that

the data:
17426 42.75 4.40

(which describes employee number / 7426 who has worked for 42%
hours and is paid at a rate of $4.40) is available at the input.

With the description of the action we will give some pictorial
representation at certain points in time of the part of the store that
contains the data. (Part of the store, of course, contains the program.)
Initially the store contains the program and whatever was left there
by the previous program.

The segment:

program payroll (input, output);

is called the program heading. This starts the program, gives it the
name payroll, and says that the program has both input and output.
It is possible and sensible to have a program with no input; but it is
not really sensible to have one with no output. No action is taken by
the computer. Note that program is in bold type and does not start
with a capital letter. Note, too, that precise punctuation is important:
the brackets, the comma and the semi-colon are all necessary. The
spacing is rather more flexible, as we shall describe in Chapter 6, but
until then we will put blanks in as we would when writing English.

The rest of the program has the form of a block (for reasons we
will explain later) and is terminated by a full stop. The block consists
of a variable declaration part followed by a statement part.

The variable declaration part :

var code : integer, hours, rate, gross, overtime : real;

defines the characteristics of the quantities that the program operates
on, the so-called variables. It says that there are five variables, one
called code which may take on integral values only, and four called
hours, rate, gross and overtime, all of which may take on real values.

Clearly the variables of this program correspond to the quantities
described above. For example, the variable gross corresponds to gross
pay. There is a certain freedom of choice in this matter as we will see
in Chapter 2.7

The effect is that five pieces (or locations as we generally say) of
storage are allocated, one to each of the variables. Pictorially we can
imagine that the name of the variable is attached to the location as
shown in Fig. 1.3.

overtime

?

Fig. 1.3 The store after the declarations

No value is associated with any of the variables as yet; each location
still contains whatever value happened to be in the store when the
program was started. We indicate this by a question mark though
later on we will merely leave the location blank.

The next segment:

begin

T There is no real reason for choosing gross rather than, say,
grosspay or gpay.

simply heralds the beginning of the statement part which extends up
to and including the

end

at the end of the program. The statement part consists of four
statements separated by semi-colons: (Again the punctuation is
important.)

The first statement (a form of procedure statement):

read(code, hours, rate)

causes the next three numbers to be read from the input, (there should,
of course, be only the three) and their values assigned to code, hours
and rate respectively. Fig. 1.4 shows the effect on the store.

code hours rate ‘gross overtime

17426 42.75 4.40 ? ?

—

Fig. 1.4 The store after the read statement

The next two statements:

‘overtime .= hours - 37.5;
gross := 37.5%rate + overtime*1.5*rate

are assignment statements. Each causes appropriate (here arithmetic)
operations to take place and the result assigned to a variable.

Thus, in the first, 3 7.5 is subtracted from the value of hours (which
is 42.75) giving 5.25, this value being assigned to overtime.
Similarly, the value:
37.5 x4.40+5.25 x 1.5 x4.40
= 199.65

is assigned to gross. Fig. 1.5 shows the state of the store after these
two statements.

rate 8ross overtime

4.40 199.65 5.25

Fig. 1.5 The store after the assignments

4

The next statement (another procedure statement):
write (code, gross)

causes the values of code and gross to be printed out. This is the last
statement of the statement part.

Note that, as we mentioned before, the whole program is terminated
by a full-stop.

1.2 The compiler

Wa have assumed here that the program is initially in the store and
that the data is available at input. The question is: how does the
program get into the machine? The answer is it is read by another
program which resides in the machine, called a compilert. The
compiler not only reads in the program but also converts it from
Pascal (the so-called source language) into the language of the machine
(the so-called object language). We can usually forget this conversion
process and pretend, as we have here, that the machine obeys Pascal.
It will be convenient, though, to refer to the compilation process
throughout this book to explain some of the features of Pascal.

We ought, at this point, to distinguish carefully the roles of program
and data. In real life a program once written will be used unchanged
on different sets of data perhaps over an extended time. Thus we
conceive of the program as the very general component and the data
as the component which makes it specific. The program, once prop-
erly developed, will reside, like the compiler, within the system and
data will be presented at the input whenever the program is to be
run. In an environment where programs are being developed, however,
we tend to use very simple data (for ease of testing) and present
program and data together to the machine.

1.3 Running the program

A Pascal program contains certain words which, as written in manu-
script or typescript, are underlined and as printed. appear in bold
face.f This convention serves two purposes:

(i) Experience with similar languages shows that the under-
lining makes it easier to read programs.

(ii) It reminds us that the underlined words are word
delimiters (or reserved words) which have a fixed meaning
and can only be used in a fixed context.

T It may be an interpreter but the differences are not important
at this point.

f [Itis unfortunate that there is no consensus amongst authors
on this point. Our convention is essentially that of Wirth.

The identifiers (to be defined shortly) can, on the other hand, be
changed at will. Thus Fig. 1.6 performs the same function as Fig. 1.2.

program p (input, output);
varc . integer; h,r, g o : real -

begin
read (c, h, r);
o :=h - 375

g = 37.5% + 0*1.5%;
write (¢, g)
end.

Fig. 1.6 The simple payroll program of Fig. 1.2 with single-letter
identifiers

Note that there are some identifiers such as:
integer real ‘read write

which are pre-defined. That is, they could be used for another
purpose but it would be difficult to find a good reason for doing
this. As is the case with most other programming languages, we
simply have to learn which words are pre-defined identifiers and which
are word delimiters. Appendix 2 contains a list of both classes.

To run a Pascal program it must be presented to the machine on
punched cards or punched paper tape, or {from a terminal. This
involves us in two problems: .

(i) Most input devices have only upper case letters and so com-
pilers are generally written to accept upper case and treat it
as lower case. This allows us to use lower case letters in our
identifiers which makes the writing of manuscript programs
much easier.

(ii) The operating system of the computer demands that certain
other information be supplied on control cards. Further, as
noted earlier, the program and data are presented together
in small development programs.

The payroll program of Fig. 1.2 might well be presented as in Fig.
1.7, where we have added some commentary between the braces.

{Some control cards as prescribed by your computer system.

The information provided will include at least a name which

identifies you to the computer system.}

PROGRAM PAYROLL (INPUT, OUTPUT);

VAR CODE : INTEGER; HOURS, RATE, GROSS,
OVERTIME : REAL;

BEGIN '

READ (CODE, HOURS, RATE) ;

OVERTIME := HOURS - 37.5;

cont’d

GROSS := 37.5¥RATE + OVERTIME*1.5*RATE;
WRITE(CODE, GROSS)

END.

{A control card to separate the program from the data.}
17426 42.75 4.40

{A control card to indicate the end of the data.}

Fig. 1.7 How the program of Fig. 1.2 might be presented to the

machine

It is unfortunately true that different compilers produce their output
in different ways so that it would be fruitless-to spend much time on
any one in particular, and we leave it to course tutors to explain the
system to be used.

It may be, of course, that our program is not correct. What happens
then when we present it to the computer for running? One of three
things may happen:

)

(ii)

(iii)

Suppose for example, we misspelt the word rate as rat in the
read statement of the payroll program. The compiler will dis-
cover this error by noting that, although we have referred to the
variable rat, no such variable has been declared. There could be
many other such errors. The compiler will always give some
indication of the symptoms: we then ave to diagnose the
problem. While this is difficult at first it becomes fairly easy
after a little experience.

Now suppose that we had typed the program correctly but had
allowed two of the data values to become merged together. Then
when obeying the (translated version of) the statement:

read (code, hours, rate)

the machine would stop running the program, giving a message
which indicates where in the program the error was detected and
printing out the values of the variables as a guide to help in
diagnosing the error.

Suppose, finally, we mispunched the + as a — in an assignment
statement. The program would run to a conclusion; it just would
give the wrong answer! This is always 4 difficult mistake to
correct. We will discuss it in some detail in Chapter 12 but at this
stage the only thing to do is to work through the program step
by step (like the computer) using diagrams of the store like those
used earlier (or at least stylised forms of them) until we find the
cause. Note that we must have known that there was an error
before we could have corrected it. That is, we must have known
the correct answer in order to determine that the program-
produced answer was wrong. The subject of testing programs we

