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Executive Summary

HEMICAL ENGINEERING Occupies a spe-
-cial place among scientific and engi-

neering disciplines. It is an engineering
discipline with deep roots in the world of atoms,
molecules, and molecular transformations. The
principles and approaches that make up chem-
ical engineering have a long and rich history of
contributions to the nation’s technological needs.
Chemical engineers play a key role in industries
as varied as petroleum, food, artificial fibers,
petrochemicals, plastics, ceramics, primary
metals, glass, and specialty chemicals. All these
depend on chemical engineers to tailor manu-
facturing technology to the requirements of their
products and to integrate product design with
process design. Chemical engineering was the
first engineering profession to recognize the
integral relationship between design and man-
ufacture, and this recognition has been one of
the major reasons for its success.

This report demonstrates that chemical en-
gineering research will continue to address the
technological problems most important to the
nation. In the chapters that focus on these
problems, many of the discipline’s core research
areas (e.g., reaction engineering, separations,
process design, and control) will appear again
and again. The committee hopes that by dis-
cussing research frontiers in the context of
applications, it will illustrate both the intellec-
tual excitement and the practical importance of
chemical engineering.

The research frontiers discussed in this report
can be grouped under four overlapping themes:
starting new technologies, maintaining leader-
ship in established technologies, protecting and

improving the environment, and developing sys-
tematic knowledge and generic tools. These
frontiers are described in detail in Chapters 3
through 9. From among these, the committee
has selected eight high-priority topics that merit
the attention of researchers, decision makers in
academia and industry, and organizations that
fund or otherwise support chemical engineering.
These high-priority areas are described below.
Recommendations from the committee for ini-
tiatives that would permit chemical engineers
to exploit these areas are briefly stated in
Chapter 10 and detailed in Appendix A.

RESEARCH FRONTIERS IN CHEMICAL
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Starting New Technologies

Chemical engineers have an important role
to play in bringing new technologies to com-
mercial fruition. These technologies have their
origin in scientific discoveries on the atomic and
molecular level. Chemical engineers understand
the molecular world and are skilled in integrating
product design with process design, process
control, and optimization. Their skills are needed
to develop genetic engineering (biotechnology)
as a manufacturing tool and to create new
biomedical devices, and to design new products
and manufacturing processes for advanced ma-
terials and devices for information storage and
handling. In the fierce competition for world
markets in these technologies, U.S. leadership
in chemical engineering is a strong asset.



Biotechnology and Biomedicine (Chapter 3)

The United States occupies the preeminent
scientific position in the ‘“‘new’ biology. If
America is to derive the maximum benefit of
its investment in basic biological research—
whether in the form of better health, improved
agriculture, a cleaner environment, or more
efficient production of chemicals—it must also
assume a preeminent position in biochemical
and biomedical engineering. This can be accom-
plished by carrying out generic research in the
following areas:

® Developing chemical engineering models
for fundamental biological interactions.

e Studying phenomena at biological surfaces
and interfaces that are important in the design
of engineered systems.

e Advancing the field of process engineering.
Important generic goals for research include the
development of separation processes for com-
plex and fragile bioproducts; the design of
bioreactors for plant and mammalian tissue
culture; and the development of detailed, con-
tinuous control of process parameters by rapid,
accurate, and noninvasive sensors and instru-
ments.

e Conducting engineering analyses of com-
plex biological systems.

Electronic, Photonic, and Recording
Materials and Devices (Chapter 4)

The character of American industry and so-
ciety has changed dramatically over the past
three decades as we have entered the ‘“‘infor-
mation age.”” New information technologies
have been made possible by materials and
devices whose structure and properties can be
controlled with exquisite precision. This control
is largely achieved by the use of chemical
reactions during manufacturing. Future U.S.
leadership in microelectronics, optical infor-
mation technologies, magnetic data storage, and
photovoltaics will depend on staying at the
forefront of the chemical technology used in
manufacturing processes. Chemical processing
will also be a vital part of the likely manufac-
turing processes for high-temperature super-
conductors.

FRONTIERS IN CHEMICAL ENGINEERING

At the frontiers of chemical research in this
area are a number of important challenges:

® Integrating individual chemical process steps
used in the manufacture of electronic, photonic,
and recording materials and devices. This is a
key to boosting the yield, throughput, and
reliability of overall manufacturing processes.

® Refining and applying chemical engineering
principles to the design and control of the
chemical reactors in which devices are fabri-
cated.

® Pursuing research in separations applicable
to the problem of ultrapurification. The mate-
rials used in device manufacture must be ultra-
pure, with levels of some impurities reduced to
the parts-per-trillion level;

® Improving the chemical synthesis and pro-
cessing of polymers and ceramics;

e Developing better processes for deposition
and coating of thin films. An integrated circuit,
in essence, is a series of electrically connected
thin films. Thin films are the key structural
feature of recording media and optical fibers,
as well.

® Modeling the chemical reactions that are
important to manufacturing processes and
studying their dynamics.

e Emphasizing process design and control
for environmental protection and process safety.

Microstructured Materials
(Chapters 5 and 9)

Advanced materials depend on carefully de-
signed structures at the molecular and micro-
scopic levels to achieve specific performance in
use. These materials—polymers, ceramics, and
composites—are reshaping our society and are
contributing to an improved standard of living.
The process technology used in manufacturing
these materials is crucial—in many instances
more important than the composition of the
materials themselves. Chemical engineers can
make important contributions to materials de-
sign and manufacturing by exploring the follow-
ing research frontiers:

® Understanding how microstructures are
formed in materials and learning how to control
the processes involved in their formation.
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e Combining materials synthesis and mate-
rials processing. These areas have traditionally
been considered separate research areas. Future
advances in materials require a fusion of these
topics in research and practice.

e Fabricating and repairing complex mate-
rials systems. Mechanical methods currently in
use (e.g., riveting of metals) cannot be applied
reliably to the composite materials of the future.
Chemical methods (e.g., adhesion and molec-
ular self-assembly) will come to the fore.

Maintaining Leadership in Established
Technologies

The U.S. chemical processing industries are
one of the largest industrial sectors of the U.S.
economy. The myriad of industries listed at the
beginning of this chapter are pervasive and
absolutely essential to society. The U.S. chem-
ical industry is one of the most successful U.S.

20

3

industries on world markets. At a time of record
trade deficits, the chemical industry has main-
tained both a positive balance of trade and a
growing share of world markets (Figure 1.1).
The future international competitiveness of these
industries should not be taken for granted. Far-
sighted management in industry and continued
support for basic research from both industry
and government are required if this sector of
the economy is to continue to contribute to the
nation’s prosperity.

In a report of this scope and size, it is not
possible to spell out the research challenges
faced by each part of the chemical processing
industries. For example, the committee has
reluctantly chosen to pass over food processing,
a multibillion-dollar industry where chemical
engineering finds a growing variety of applica-
tions. The committee has focused its discussion
of challenges to the processing industries on
energy and natural resources technologies. These
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of more than $150 billion, the U.S. chemical industry has maintained a positive
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technologies are key to supplying crucial na-
tional needs, keeping the United States com-
petitive, and providing for national security.
They are also the focus of substantial research
and development in academia and government
laboratories, in addition to industry. The com-
mittee has identified two high-priority initiatives
to sustain the vitality and creativity of engi-
neering research on energy and natural re-
sources. These initiatives focus on in-situ pro-
cessing of resources and on liquid fuels for the
future.

In-Situ Processing of Energy and Mineral
Resources (Chapter 6)

The United States has historically benefited
from rich domestic resources of minerals and
fuels located in readily accessible parts of the
earth’s crust. These easily reached resources
are being rapidly depleted. Our remaining re-
serves, while considerable, require moving
greater and greater amounts of the earth’s crust
to obtain and process resources, whether that
crust is mixed with the desired material (as in
a dilute ore vein) or whether it simply lies over
the resource. A long-range solution to this
problem is to use chemical reactions to extract
underground resources, with the earth itself as
the reaction vessel. This is known as in-situ
processing. Enhanced oil recovery is the most
successful current example of in-situ process-
ing, and yet an estimated 300 billion barrels of
U.S. oil trapped underground in knownréserves
cannot be recovered with current technology.
Long-range research aimed at oil, shale, tar
sands, coal, and mineral resources is needed.
Formidable problems exist both for chemists
and for chemical engineers. Some research
priorities for chemical engineers include sepa-
ration processes, improved materials, combus-
tion processes, and advanced methods of pro-
cess design, scale-up, and control. Research on
in-situ processing will require collaboration be-
tween chemical engineers and scientists and
engineers skilled in areas such as geology,
geophysics, hydrology, environmental science,
mechanical engineering, physics, mineralogy,
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materials science, metallurgy, surface and col-
loid science, and chemistry.

Liquid Fuels for the Future
(Chapters 6 and 9)

Our current and foreseeable transportation
technologies depend completely on a plentiful
supply of liquid fossil fuels. Anticipatory re-
search to ensure a future supply of these fuels
is a wise investment. Research of this type
subsumes a number of generic challenges in
chemical engineering, including:

® Finding new chemical process pathways
that can make large advances in the production
of liquid fuels from solid and gaseous resources.

® Processing solids, since equipment design
and scale-up are greatly limited by our lack of
fundamental understanding of solids behavior.

e Developing better separation processes.

e Conducting research on materials capable
of withstanding the extreme processing condi-
tions that may be encountered when processing
liquid fuels.

e Advancing the state of the art in the design,
scale-up, and control of processes.

Protecting and Improving the Environment

Responsible Management of Hazardous
Substances (Chapter 7)

The modern world faces many environmental
problems. Some of these are a consequence of
producing the ever-increasing number and va-
riety of chemicals and materials demanded by
society. Chemical engineers must take up the
role of cradle-to-grave guardians for chemicals,
ensuring their safe and environmentally sound
manufacture, use, and disposal. This means
becoming involved in a range of research areas
dealing with environmental protection, process
safety, and hazardous waste management. In
the following four areas, the challenges are
clear, the opportunities for chemical engineering
research are abundant, and the potential benefits
to society are great.
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e Conducting long-term research on the gen-
eration, control, movement, fate, detection, and
environmental and health effects of contami-
nants in the air, water, and land. Chemical
engineering research should include the funda-
mental investigation of combustion processes,
the application of biotechnology to waste deg-
radation, the development of sensors and mea-
surement techniques, and participation in inter-
disciplinary studies of the environment’s capacity
to assimilate the broad range of chemicals that
are hazardous to humans and ecosystems:

e Developing new chemical engineering de-
sign tools to deal with the multiple objectives
of minimum cost; process resilience to changes
in inputs; minimization of toxic intermediates
and products; and safe response to upset con-
ditions, start-up, and shutdown.

e Directing research at cost-effective man-
agement of hazardous waste, as well as im-
proved technologies (e.g., combustion) or new
technologies for destroying hazardous waste.

e Carrying out research to facilitate multi-
media, multispecies approaches to waste man-
agement. Acid rain and the leaching of hazard-
ous chemicals from landfills demonstrate the
mobility of chemicals from one medium (e.g.,
air, water, or soil) to another.

Developing Systematic Knowledge and
Generic Tools

The success of chemical engineers in contrib-
uting to a diverse set of technologies is due to
an emphasis on discovering and developing
basic principles that transcend individual tech-
nologies. If, 20 years from now, chemical en-
gineers are to have the same opportunities for
contributing to important societal problems that
they have today, then the research areas de-
scribed in the preceding sections must be ex-
plored and supported in a way that maximizes
the development of basic knowledge and tools.

In surveying the field of chemical engineering,
the committee has identified two cross-cutting
areas that are in a state of rapid development
and that promise major contributions to a wide
range of technologies. Accordingly, this report
singles out for special attention the advances

W

under way in applying modern computational
methods and process control to chemical engi-
neering and the promise of basic research in
surface and interfacial engineering.

Advanced Computational Methods and
Process Control (Chapter 8)

The speed and capability of the modern com-
puter are revolutionizing the practice of chemical
engineering. Advances in speed and memory
size and improvements in complex problem-
solving ability are more than doubling the ef-
fective speed of the computer each year. This
unrelenting pace of advance has reached the
stage where it profoundly alters the way in
which chemical engineers can conceptualize
problems and approach solutions. For example:

e It is now realistic to imagine mathematical
models of fundamental phenomena beginning
to replace laboratory and field experiments.
Such computations increasingly allow chemical
engineers to bypass the long (2 to 3 years),
costly step of producing process and product
prototypes, and permit the design of products
and processes that better utilize scarce re-
sources, are significantly less polluting, and are
much safer.

e Future computer aids will allow design and
control engineers to examine many more alter-
natives much more thoroughly and thus produce
better solutions to problems within the known

“technology.

® Better modeling will allow the design of
processes that are easier and safer to operate.
Improved control methodology and sensors will
overcome the current inability to model certain
processes accurately.

e Sensors of the future will be incredibly
small and capable. Many will feature a chemical
laboratory and a computer on a chip. They will
enable chemical engineers to detect chemical
compositions inside hostile process environ-
ments and revolutionize their ability to control
processes.

To realize the promise of the computer in
chemical engineering, we need a much larger
effort to develop methodologies for process
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design and control. In addition, state-of-the-art
computational facilities and equipment must
become more widely disseminated into chemical
engineering departments in order to integrate
methodological advances into the mainstream
of research and education.

Surface and Interfacial Engineering
(Chapter 9)

Surfaces, interfaces, and microstructures play
an important role in many of the above-men-
tioned research frontiers. Chemical engineers
explore structure-property relationships at the
atomic and molecular level, investigate elemen-
tary chemical and physical transformations oc-
curring at phase boundaries, apply modern theo-
retical methods for predicting chemical dynamics
at surfaces, and integrate this knowledge into
models that can be used in process design and
evaluation. Fundamental advances in these areas
will have a broad impact on many technologies.
Examples include laying down thin films for
microelectronic circuits, developing high-strength
concrete for roadways and buildings, and in-
venting new membranes for artificial organs.
Advances in surface and interfacial engineering
can also move the field of heterogeneous catal-
ysis forward significantly. New knowledge can
help ciic . ~al engineers play a much bigger role
in the synt. =sis and modification of novel cata-
lysts with enhanced capabilities. This activity
would complement their traditional strength in
analytical reaction engineering of catalysts.

HIGHLIGHTS OF THE
RECOMMENDATIONS

Education and Training of Chemical
Engineers (Chapter 10)

The new research frontiers in chemical en-
gineering, some of which represent new appli-
cations for the discipline, have important im-
plications for education. A continued emphasis
is needed on basic principles that cut across
many applications, but a new way of teaching
those principles is also needed. Students must
be exposed to both traditional and novel appli-
cations of chemical engineering. The American

FRONTIERS IN CHEMICAL ENGINEERING

Institute of Chemical Engineers (AIChE) has
set in motion a project to incorporate into
undergraduate chemical engineering courses ex-
amples and problems from emerging applica-
tions of the discipline. The committee applauds
this work, as well as recent AIChE moves to
allow more flexibility for students in accredited
departments to take science electives.

A second important need in the curriculum
is for a far greater emphasis on design and
control for process safety, waste minimization,
and minimal adverse environmental impact.
These themes need to be woven into the cur-
riculum wherever possible. The AIChE Center
for Chemical Process Safety is attempting to
provide curricular material in this area, but a
larger effort than this project is needed. Several
large chemical companies have significant ex-
pertise in this area. Closer interaction between
academic researchers and educators and indus-
try is required to disseminate this expertise.

The Future Size and Composition of
Academic Departments (Chapter 10)

A bold step by universities is needed if their
chemical engineering departments are (1) to
help the United States achieve the preeminent
position of leadership in new technologies and
(2) to keep the highly successful U.S. chemical
processing industries at the forefront of world
markets for established technologies. The uni-
versities should conduct a one-time expansion
of their chemical engineering departments over
the next 5 years, exercising a preference for
new faculty capable of research at interdisci-
plinary frontiers.

This expansion will require a major commit-
ment of resources on the part of universities,
government, and industry. How can such a
preferential commitment to one discipline be
justified, particularly at a time of budgetary
austerity? One answer is that the worldwide
contest for dominance in biotechnology, ad-
vanced materials technologies, and advanced
information devices is in full swing, and the
United States cannot afford to stand by until it
gets its budgetary house in order. As the uniquely
“molecular’’ engineers, chemical engineers have
powerful tools that need to be refined and



EXECUTIVE SUMMARY

applied to the commercialization of these tech-
nologies. A second answer is that the alternative
to expansion, a redistribution of existing re-
sources for chemical engineering research, would
cut into vital programs that support U.S. com-
petitiveness in established chemical technolo-
gies. The recommendation for an expansion in
chemical engineering departments is not a call
for ‘*more of the same.”’ It is the most practical
way to move chemical engineering aggressively
into the new areas represented by this report’s
research priorities while maintaining the disci-
pline’s current strength and excellence.

Balanced Portfolios (Chapter 10)

The net result of an additional investment of
resources in chemical engineering should be the
creation of three balanced portfolios: one of
priority research areas, one of sources of fund-
ing for research, one of mechanisms by which
that funding can be provided.

The eight priority research areas described
above constitute the committee’s recommen-
dation of a balanced portfolio of research areas
on the frontiers of the discipline.

In terms of a balanced portfolio of funding
sources, the committee proposes initiatives for
industry and a number of federal agencies in
Chapter 10 and Appendix A to ensure a healthy
diversity of sponsors. Table 1.1 links specific
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research frontiers to funding initiatives for po-
tential sponsors.

A third balanced portfolio, of funding mech-
anisms, is needed if the above-mentioned re-
search frontiers are to be pursued in the most
effective manner. Different frontiers will require
different mixes of mechanisms, and the decision
to use a particular mechanism should be deter-
mined by the nature of the research problem,
by instrumentation and facilities requirements,
and by the perceived need for trained personnel
in particular areas for industry. This topic is
discussed in more detail in Chapter 10.

The Need for Expanded Support of
Research in Chemistry (Chapter 10)

Chemical engineering builds on research re-
sults from other disciplines, as well as those
from its own practitioners. Not surprisingly, the
most important of these other disciplines is
chemistry. A vital base of chemical science is
needed to stimulate future progress in chemical
engineering, just as a vital base in chemical
engineering is needed to capitalize on advances
in chemistry. The committee endorses the rec-
ommendations contained in the NRC’s 1985
report Opportunities in Chemistry, and urges
their implementation in addition to the recom-
mendations contained in this volume.

TABLE 1.1 High-Priority Research Frontiers and Initiatives«

Relevant Audiences”

Priority Research Area NSF DOE NIH DOD EPA NBS BOM CPI
Biotechnology and biomedicine e %4 el = %
Electronic, photonic, and recording

materials and devices el I e
Microstructured materials - v - %4 v
In-situ processing of resources I el i’
Liquid fuels for the future % % I 2
Responsible management of

hazardous substances ¥ - el
Advanced computational methods and

process control I 4 el
Surface and interfacial engineering 1 e »

4 = major initiative recommended; »* = supporting initiative recommended.

® NSF = National Science Foundation; DOE = Department of Energy; NIH = National Institutes of Health;
DOD = Department of Defense; EPA = Environmental Protection Agency; NBS = National Bureau of Standards; BOM
= Bureau of Mines; CPI = U.S. chemical processing industries.



