O'REILLY"

Cookbook

CHIF A& 2S5 (2 enkR)

% B K% it Stephen Cleary &

& L BLSEG]| (wam)

Concurrency in C# Cookbook

Stephen Cleary Z&

Beijing - Cambridge - Farnham - Kdln - Sebastopol - Tokyo K@N{={|HNE

O’Reilly Media, Inc. # A% & # X % i JiAt A

BN FERFHRY

| B ZENR 4 B (CIP) 818

CHIt & 2 ML 3L) . 35 3 /(3€) 52 F| B (Cleary, S.)
F. —RWHA. —E R R AR 20152

F5 44 JE3C : Concurrency in C# Cookbook

ISBN 978—-7- 5641 — 53847

[.OC NM.0®%- [.OCEEFBFIE
it—3¥#3x N. OTP3I12 '

rh [A 4548 CIP 38 1% 5 (2014) 55 294384 5

1LV RAUR ZEVERLA R BSE
B :10-2014- 152 &

© 2014 bv O'Reillv Media, Inc.
Reprint of the Enelish Edition, iointly published bv O'Reilly Media, Inc. and Southeast UniversitV Press,

2015. Authorized reorint of the original Enelish edition, 2014 O'Reillv Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in anv form.
L B Ha & O'Reilly Media, Inc. $ & 2014.

EXH R A B K hRAR i BR 2015, bW FP ALY th AR A4 B R E R A4 B R P A &
—— O'Reilly Media, Inc.#94% 7T .

BBITH A AAEEHFT, RSB AETHEL L RRRUETH X EH.

CHIf % 2 LB L ERRRD

HAREAT : ZRBE A AL

#o bk EETPUMEHE 25 MR4:210096,
WO A LE

M Hik: httos//www.seupress.com

B, FHE{4: press@seunress.com

Fill : % M T B 58 = BRI B/ B
 TRTEKXOB0OBEXK 16FRA
: 13)

: 255 FF

: 01582 A% 1R

: 2015 4F 2 ASE 1 KEDRI

: ISBN 978 —7— 5641 — 5384 — 7

: 42.00 7T

HHEDFNEHE
Sdo 55T ER M

At EHEANERREE, F S EREEBA . BiE () 025- 83791830

Praise for Concurrency in C# Cookbook

“The next big thing in computing is making massive parallelism accessible to mere mortals.
Developers have more power available to us than ever before, but expressing concurrency
is still a challenge for many. Stephen turns his attention to this problem, helping us all better
understand concurrency, threading, reactive programming models, parallelism, and much

more in an easy-to-read but complete reference.”

— Scott Hanselman
Principal Program Manager, ASP.NET and Azure Web Tools,
Microsoft

“The breadth of techniques covered and the cookbook format make this the ideal reference
book for modern .NET concurrency.”

— Jon Skeet
Senior Software Engineer at Google

“Stephen Cleary has established himself as a key expert on asynchrony and parallelism in
C#. This book clearly and concisely conveys the most important points and principles
developers need to understand to get started and be successful with these technologies.”

— Stephen Toub
Principal Architect, Microsoft

oL, =B SEEEPDFIE U 0] : www. ertongbook. com

Preface

I think the animal on this cover, a common palm civet, is applicable to the subject of
this book. I knew nothing about this animal until I saw the cover, so I looked it up.
Common palm civets are considered pests because they defecate all over ceilings and
attics and make loud noises fighting with each other at the most inopportune times.
Their anal scent glands emit a nauseating secretion. They have an endangered species
rating of “Least Concern,” which is apparently the politically correct way of saying, “Kill
as many of these as you want; no one will miss them.” Common palm civets enjoy eating
coffee cherries, and they pass the coffee beans through. Kopi luwak, one of the most
expensive coffees in the world, is made from the coffee beans extracted from civet ex-
cretions. According to the Specialty Coffee Association of America, “It just tastes bad.”

This makes the common palm civet a perfect mascot for concurrent and multithreaded
developement. To the uninitiated, concurrency and multithreading are undesirable.
They make well-behaved code act up in the most horrendous ways. Race conditions
and whatnot cause loud crashes (always, it seems, either in production or a demo). Some
have gone so far as to declare “threads are evil” and avoid concurrency completely. There
are a handful of developers who have developed a taste for concurrency and use it
without fear; but most developers have been burned in the past by concurrency, and
that experience has left a bad taste in their mouth.

However, for modern applications, concurrency is quickly becoming a requirement.
Users these days expect fully responsive interfaces, and server applications are having
to scale to unprecedented levels. Concurrency addresses both of these trends.

Fortunately, there are many modern libraries that make concurrency much easier! Par-
allel processing and asynchronous programming are no longer exclusively the domains
of wizards. By raising the level of abstraction, these libraries make responsive and scal-
able application development a realistic goal for every developer. If you have been
burned in the past when concurrency was extremely difficult, then I encourage you to
give it another try with modern tools. We can probably never call concurrency easy, but
it sure isn’t as hard as it used to be!

vii

Who Should Read This Book

This book is written for developers who want to learn modern approaches to concur-
rency. I do assume that you've got a fair amount of .NET experience, including an
understanding of generic collections, enumerables, and LINQ. I do not expect that you
have any multithreading or asynchronous programming knowledge. If you do have
some experience in those areas, you may still find this book helpful because it introduces
newer libraries that are safer and easier to use.

Concurrency is useful for any kind of application. It doesn’t matter whether you work
on desktop, mobile, or server applications; these days concurrency is practically a re-
quirement across the board. You can use the recipes in this book to make user interfaces
more responsive and servers more scalable. We are already at the point where concur-
rency is ubiquitous, and understanding these techniques and their uses is essential
knowledge for the professional developer.

Why | Wrote This Book

Early in my career, [learned multithreading the hard way. After a couple of years, I
learned asynchronous programming the hard way. While those were both valuable ex-
periences, [do wish thatback then [had some of the tools and resources that are available
today. In particular, the async and await support in modern .NET languages is pure
gold.

However, if you look around today at books and other resources for learning concur-
rency, they almost all start by introducing the mostlow-level concepts. There’s excellent
coverage of threads and serialization primitives, and the higher-level techniques are put
off until later, if they’re covered at all. I believe this is for two reasons. First, many
developers of concurrency such as myself did learn the low-level concepts first, slogging
through the old-school techniques. Second, many books are years old and cover now-
outdated techniques; as the newer techniques have become available, these books have
been updated to include them, but unfortunately placed them at the end.

I think that’s backward. In fact, this book only covers modern approaches to concur-
rency. That’s not to say there’s no value in understanding all the low-level concepts.
When I went to college for programming, I had one class where I had to build a virtual
CPU from a handful of gates, and another class that covered assembly programming.
In my professional career, I've never designed a CPU, and I've only written a couple
dozen lines of assembly, but my understanding of the fundamentals still helps me every
day. However, it’s best to start with the higher-level abstractions; my first programming
class was not in assembly language.

This book fills a niche: it is an introduction to (and reference for) concurrency using
modern approaches. It covers several different kinds of concurreny, including parallel,

viii | Preface

asynchronous, and reactive programming. However, it does not cover any of the old-
school techniques, which are adequately covered in many other books and online re-
sources.

Navigating This Book

This book is intended as both an introduction and as a quick reference for common
solutions. The book is broken down as follows:

o Chapter 1 is an introduction to the various kinds of concurrency covered by this
book: parallel, asynchronous, reactive, and dataflow.

o Chapters 2-5 are a more thorough introduction to these kinds of concurrency.

o The remaining chapters each deal with a particular aspect of concurrency, and act
as a reference for solutions to common problems.

I recommend reading (or at least skimming) the first chapter, even if youre already
familiar with some kinds of concurrency.

Online Resources

This book acts like a broad-spectrum introduction to several different kinds of con-
currency. I've done my best to include techniques thatI and others have found the most
helpful, but this book is not exhaustive by any means. The following resources are the
best ones I've found for a more thorough exploration of these technologies.

For parallel programming, the best resource I know of is Parallel Programming with
Microsoft .NET by Microsoft Press, which is available online (http://bit.ly/parallel-
prog). Unfortunately, it is already a bit out of date. The section on Futures should use
asynchronous code instead, and the section on Pipelines should use TPL Dataflow.

For asynchronous programming, MSDN is quite good, particularly the “Task-based
Asynchronous Pattern” (http://bit.ly/micro-TAP) document.

Microsoft has also published an “Introduction to TPL Dataflow,” (http://bit.ly/intro-
tpl) which is the best description of TPL Dataflow.

Reactive Extensions (Rx) is a library that is gaining a lot of traction online and continues
evolving. In my opinion, the best resource today for Rx is an ebook by Lee Campbell
called Introduction to Rx (http://www.introtorx.com/).

Preface | ix

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width .
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip, suggestion, or general note.

This element indicates a warning or caution.

Safari® Books Online

.3 Safari Books Online is an on-demand digital library that
Safa Pl delivers expert content in both book and video form from

BooksOnline the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-

x | Preface

fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/concur-c-ckbk.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This book simply would not exist without the help of so many people!

First and foremost, I'd like to acknowledge my Lord and Savior Jesus Christ. Becoming
a Christian was the most important decision of my life! If you want more information
on this subject, feel free to contact me via my personal web page (http:/
stephencleary.com/).

Second, I thank my family for allowing me to give up so much time with them. When
I started writing, I had some author friends of mine tell me, “Say goodbye to your family
for the next year!” and I thought they were joking. My wife, Mandy, and our children,
SD and Emma, have been very understanding while I put in long days at work followed
by writing on evenings and weekends. Thank you so much. I love you!

Preface | xi

Of course, this book would not be nearly as good as it is without my editor, Brian
MacDonald, and our technical reviewers: Stephen Toub, Petr Onderka (“svick”), and
Nick Paldino (“casperOne”). So if any mistakes get through, it’s totally their fault. Just
kidding! Their input has been invaluable in shaping (and fixing) the content, and any
remaining mistakes are of course my own.

Finally, I'd like to thank some of the people I've learned these techniques from: Stephen
Toub, Lucian Wischik, Thomas Levesque, Lee Campbell, the members of Stack Over-
flow and the MSDN Forums, and the attendees of the software conferences in and
around my home state of Michigan. I appreciate being a part of the software develop-
ment community, and if this book adds any value, it is only because of so many who
have already shown the way. Thank you all!

xii | Preface

Table of Contents

Preface. .oovvesnsenesnivoyann R — $25 0 S 4 3 X 8 PR I B U L A A 9 0 YA 2R vii
1. Concurrency: An Overview........ o i 4780 0 T N N O K 8 1
1.1. Introduction to Concurrency 1
1.2. Introduction to Asynchronous Programming 3
1.3. Introduction to Paralle]l Programming 7
1.4. Introduction to Reactive Programming (Rx) 10
1.5, Introduction to Dataflows 12
1.6. Introduction to Multithreaded Programming 14
1.7. Collections for Concurrent Applications 15
1.8. Modern Design : 15
1.9. Summary of Key Technologies 16
2. AsyncBasics......oiininens S T SO 19
2.1. Pausing for a Period of Time 20
2.2. Returning Completed Tasks 22
2.3. Reporting Progress 23
2.4. Waiting for a Set of Tasks to Complete 24
2.5. Waiting for Any Task to Complete 27
2.6. Processing Tasks as They Complete 28
2.7. Avoiding Context for Continuations 32
2.8. Handling Exceptions from async Task Methods 33
2.9. Handling Exceptions from async Void Methods 34
3. ParallelBasics........cooovvniiiiiiiiiiiiiiiiiii e 37
3.1. Parallel Processing of Data 37
3.2. Parallel Aggregation 39
3.3. Parallel Invocation 41
3.4. Dynamic Parallelism 42

3.5. Parallel LINQ

DAtAflOW BASIES: i v s siavis wiis 56660 ¢ 55 6 5.5 4 606 o100 010 5.0im 5'0is 60 m it incs win e

4.1. Linking Blocks

4.2. Propagating Errors

4.3. Unlinking Blocks

4.4. Throttling Blocks

4.5. Parallel Processing with Dataflow Blocks
4.6. Creating Custom Blocks

Rx Basics. R R e

5.1. Converting .NET Events

5.2. Sending Notifications to a Context

5.3. Grouping Event Data with Windows and Buffers

5.4. Taming Event Streams with Throttling and Sampling
5.5. Timeouts

Testing. s oo vaeivasnsinnine T S er T T
6.1. Unit Testing async Methods

6.2. Unit Testing async Methods Expected to Fail

6.3. Unit Testing async void Methods

6.4. Unit Testing Dataflow Meshes

6.5. Unit Testing Rx Observables

6.6. Unit Testing Rx Observables with Faked Scheduling

IOEBIOR: cn.i wrui o o m wim oo i s i s W o #5636 6 i & s 30 3

7.1. Async Wrappers for “Async” Methods with “Completed” Events
7.2. Async Wrappers for “Begin/End” methods

7.3. Async Wrappers for Anything

7.4. Async Wrappers for Parallel Code

7.5. Async Wrappers for Rx Observables

7.6. Rx Observable Wrappers for async Code

7.7. Rx Observables and Dataflow Meshes

CONETHIONS, v v i wincs ok 7 s om0 i o o i i e v

8.1. Immutable Stacks and Queues
8.2. Immutable Lists

8.3. Immutable Sets

8.4. Immutable Dictionaries

8.5. Threadsafe Dictionaries

8.6. Blocking Queues

8.7. Blocking Stacks and Bags

8.8. Asynchronous Queues

44

47
48
49
51
52
53
54

57
58
60
62
64
66

69
70
71
73
74
76
78

83
83
85
86
88
89
90
92

100
102
104
106
108
110
112

Iv

| Table of Contents

8.9. Asynchronous Stacks and Bags 115

8.10. Blocking/Asynchronous Queues 117
9. Cancellation............. e & S o A W s & ks i s o i v TR
9.1. Issuing Cancellation Requests 122
9.2. Responding to Cancellation Requests by Polling 125
9.3. Canceling Due to Timeouts 126
9.4. Canceling async Code 127
9.5. Canceling Parallel Code 128
9.6. Canceling Reactive Code 130
9.7. Canceling Dataflow Meshes 132
9.8. Injecting Cancellation Requests 133
9.9. Interop with Other Cancellation Systems 134

10. Functional-Friendly O0P... .o s cusvvensvavimsovsvossnoonsnsvosssovssnessssases 137

10.1. Async Interfaces and Inheritance 137
10.2. Async Construction: Factories 139
10.3. Async Construction: The Asynchronous Initialization Pattern 141
10.4. Async Properties 144
10.5. Async Events 147
10.6. Async Disposal 150

11. Synchronization.ceeeessesoseansnes NS AT SIS I WS S A LT I B NN 8 155
11.1. Blocking Locks 160
11.2. Async Locks 162
11.3. Blocking Signals 164
11.4. Async Signals 165
11.5. Throttling 167

12 SCRUOUING. i« oo con wuoms scvnms sns svs smm s w30 wm iass viow ams smpmasavanans vwn s 109
12.1. Scheduling Work to the Thread Pool 169
12.2. Executing Code with a Task Scheduler 171
12.3. Scheduling Parallel Code 173
12.4. Dataflow Synchronization Using Schedulers 174

13. Scenarios.........oooeevnnnnnnn, Y T T PO T e PP Ly P P 175
13.1. Initializing Shared Resources 175
13.2. Rx Deferred Evaluation 177
13.3. Asynchronous Data Binding 178
13.4. Implicit State 180
DU, .m0 i 050 0 Bt B 0 8k WS 5 1 i 84 38 504 e 183

Tableof Contents | v

CHAPTER 1
Concurrency: An Overview

Concurrency is akey aspect of beautiful software. For decades, concurrency was possible
but difficult. Concurrent software was difficult to write, difficult to debug, and difficult
to maintain. As aresult, many developers chose the easier path and avoided concurrency.
However, with the libraries and language features available for modern .NET programs,
concurrency is much easier. When Visual Studio 2012 was released, Microsoft signifi-
cantly lowered the bar for concurrency. Previously, concurrent programming was the
domain of experts; these days, every developer can (and should) embrace concurrency.

1.1. Introduction to Concurrency

Before continuing, I’d like to clear up some terminology that I'll be using throughout
this book. Let’s start with concurrency.

Concurrency
Doing more than one thing at a time.

I hope it’s obvious how concurrency is helpful. End-user applications use concurrency
to respond to user input while writing to a database. Server applications use concurrency
to respond to a second request while finishing the first request. You need concurrency
any time you need an application to do one thing while it’s working on something else.
Almost every software application in the world can benefit from concurrency.

At the time of this writing (2014), most developers hearing the term “concurrency”
immediately think of “multithreading” Id like to draw a distinction between these two.

Multithreading
A form of concurrency that uses multiple threads of execution.

Multithreading literally refers to using multiple threads. As we’ll see in many recipes in
this book, multithreading is one form of concurrency, but certainly not the only one. In
fact, direct use of the low-level threading types has almost no purpose in a modern

application; higher-level abstractions are more powerful and more efficient than old-
school multithreading. As a consequence, I'll minimize my coverage of outdated tech-
niques in this book. None of the multithreading recipes in this book use the Thread or
BackgroundWorker types; they have been replaced with superior alternatives.

As soon as you type new Thread(), it’s over; your project already has
legacy code.

But don’t get the idea that multithreading is dead! Multithreading lives on in the thread
pool, a useful place to queue work that automatically adjusts itself according to de-
mand. In turn, the thread pool enables another important form of concurrency: parallel
processing.

Parallel Processing
Doing lots of work by dividing it up among multiple threads that run concurrently.

Parallel processing (or parallel programming) uses multithreading to maximize the use
of multiple processors. Modern CPUs have multiple cores, and if there’s a lot of work
to do, then it makes no sense to just make one core do all the work while the others sit
idle. Parallel processing will split up the work among multiple threads, which can each
run independently on a different core.

Parallel processing is one type of multithreading, and multithreading is one type of
concurrency. There’s another type of concurrency that is important in modern appli-
cations but is not (currently) familiar to many developers: asynchronous programming.

Asynchronous Programming
A form of concurrency that uses futures or callbacks to avoid unnecessary threads.

A future (or promise) is a type that represents some operation that will complete in the
future. The modern future types in .NET are Task and Task<TResult>. Older asyn-
chronous APIs use callbacks or events instead of futures. Asynchronous programming
is centered around the idea of an asynchronous operation: some operation that is started
that will complete some time later. While the operation is in progress, it does not block
the original thread; the thread that starts the operation is free to do other work. When
the operation completes, it notifies its future or invokes its completion callback event
to let the application know the operation is finished.

Asynchronous programming is a powerful form of concurrency, but until recently, it
required extremely complex code. The async and await support in VS2012 make asyn-
chronous programming almost as easy as synchronous (nonconcurrent) programming.

2 | Chapter1:Concurrency: An Overview

