‘

E trei |
Progiaifiming

Kent Beck
Martin Fowler

Planning Extreme
Programming

Kent Beck
Martin Fowler

lllustrated by Jennifer Kohnke

A
A A 4

ADDISON-WESLEY

Boston ® San Francisco ® New York ¢ Toronto ® Montreal
London e Munich e Paris ® Madrid
Capetown e Sydney e Tokyo e Singapore e Mexico City

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and we
were aware of a trademark claim, the designations have been printed in initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connec-
tion with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales.
For more information, please contact

Pearson Education Corporate Sales Division
One Lake Street

Upper Saddle River, NJ 07458

(800) 382-3419
corpsales@pearsontechgroup.com

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data
Beck, Kent.
Planning eXtreme programming / Kent Beck, Martin Fowler.
p. cm. (The XP series)
ISBN 0-201-71091-9
1. Computer software—Development. 2. eXtreme programming. 1. Fowler, Martin,
I1. Title.

QA76.76.D47 B4335 2000
005.3—dc21
00-064306

Copyright © 2001 by Addison-Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher. Printed in
the United States of America. Published simultaneously in Canada.

ISBN 0-201-71091-9

Text printed on recycled paper

123456789 10—MA—0403020100
First printing, October 2000

To our Cindies. . .

Foreword

In On War, Carl von Clausewitz tells us that military history is a
pendulum swinging back and forth between the relative advantages of
armor and of mobility. The knights in shining armor were able to dom-
inate any knight without, but they were no match for the quick, nearly
naked pony warriors that swept across the plains with Genghis Kahn
and his Mongols. Light cavalry itself was doomed as soon as there were
tanks, and tanks were no match for fleet-footed Palestinian teenagers
with Sagger missiles. With the Maginot Line, the French were gam-
bling that the pendulum had swung again toward armor, but it hadn’t,
and the Germans simply went around it.

In the field of IT, we are just emerging from a time in which armor
(process) has been king. And now we are moving into a time when only
mobility matters. Building a product the right way still sounds like a
laudable goal, but—Ilet’s face it—what really matters today is building it
fast. Because we are process-obsessed in our field, we have tended to
react to this new imperative as we reacted to the imperatives thrust
upon us in the 1980s and 1990s. We have asked, “What shall we add to
our process to deal with this new situation?” No answer to that ques-
tion is going to be right because the question itself is wrong.

What the new mobility imperative requires is that we subtract from
process: We need to get light.

“Getting light” means more than just abandoning heavy process and
its attendant mountain of documentation. It means investing in people
so they can work quickly and effectively without formal process and

without generating a ton of paper. No one has a better vision of how
this is done than Kent Beck and Martin Fowler.

The XP movement they have founded is a way to make IT projects
light and quick. The principles of XP are not just another methodology,
another process. They are the antithesis of process. They are means to
make process irrelevant.

Because XP projects are completely different, it stands to reason that
managing them is different too. Planning Extreme Programming focuses
on how a team of XP-empowered developers is optimally led. Beck and
Fowler’s prescriptions are often wry, sometimes wise, and almost always
bang on target.

XP is the most important movement in our field today. I predict that
it will be as essential to the present generation as the SEI and its Capa-
bility Maturity Model were to the last.

Tom DeMarco
Camden, Maine

Xil Foreword

Preface

o Pe
o £ ~
This is a book about planning software projects. We are writing it
mostly for project managers—those who have to plan and track the
correspondence of the planning with reality. We also are writing it for
programmers and customers, who have a vital role to play in planning
and developing software.

Planning is not about predicting the future. When you make a plan
for developing a piece of software, development is not going to go like
that. Not ever. Your customers wouldn’t even be happy if it did,
because by the time the software gets there, the customers don’t want
what was planned; they want something different.

Like so many, we enjoy Eisenhower’s quotation: “In preparing for
battle I have always found that plans are useless, but planning is indis-
pensable.”’ That’s why this isn’t a book about plans; it’s about plan-
ning. And planning is so valuable and important, so vital, that it
deserves to go on a little every day, as long as development lasts.

If you follow the advice in this book, you are going to have a new
problem to solve every day—planning—but we won’t apologize for
that, because without planning, software development inevitably goes
off the rails.

The scope of this book is deliberately narrow. It covers how to plan and
track software development for XP projects. It’s based on our experience

1. Richard Nixon, Six Crises (New York: Touchstone Press, 1990).

as consultants and coaches, together with the experience of the grow-
ing band of early adopters who are using XP.

As a result this isn’t a book about the whole of project management.
We don’t cover typical project manager jobs such as personnel evalua-
tion, recruiting, and budgeting. We don’t address the issues of large
projects with hordes of developers, nor do we say anything about plan-
ning in the context of other software processes, or of planning other
activities. We think there are principles and techniques here that every-
one can use, but we have stuck to the parts of the process we know—
getting everybody on the team pointed in one direction, discovering
when this is no longer true, and restoring harmony.

XP (Extreme Programming) is a system of practices (you can use the
m-word if you want to; we’d rather not, thank you) that a community
of software developers is evolving to address the problems of quickly
delivering quality software, and then evolving it to meet changing busi-
ness needs.

XP isn’t just about planning. It covers all aspects of small team software
development—design, testing, implementation, deployment, and main-
tenance. However, planning is a key piece of the XP puzzle. (For an over-
view of XP, read Extreme Programming Explained: Embrace Change.
While you’re at it, buy copies of all of the rest of our books, too.)

XP addresses long projects by breaking them into a sequence of self-
contained, one- to three-week mini-projects. During each iteration

¢ Customers pick the features to be added.

< Programmers add the features so they are completely ready to be
deployed.

¢ Programmers and customers write and maintain automated tests
to demonstrate the presence of these features.

¢ Programmers evolve the design of the system to gracefully sup-
port all the features in the system.

Without careful planning, the process falls apart.

< The team must choose the best possible features to implement.

¢ The team must react as positively as possible to the inevitable
setbacks.

< Team members must not overcommit, or they will slow down.

Xiv Preface

¢ The team must not undercommit, or customers won’t get value
for their money.

¢ Team members must figure out clearly where they are and report
this accurately, so that everyone can adjust their plans accordingly

The job of the daily planner is to help keep the team on track in all
these areas.

We come by our project planning ideas by necessity. As consultants,
we are usually introduced to projects when they are mostly dead. The
projects typically aren’t doing any planning, or they are drowning in
too much planning of the wrong sort.

The resulting ideas are the simplest planning ideas we could think of
that could possibly work. But above all, remember all the planning
techniques in the world, including these, can’t save you if you forget
that software is built by human beings. In the end keep the human
beings focused, happy, and motiviated and they will deliver.

Kent Beck, Merlin, Oregon
Martin Fowler, Melrose, Massachusetts http: //www.martinfowler.com
July 2000

I have a cunning plan.
—Baldrick, Blackadder

Preface XV

Acknowledgments

Thanks to our reviewers: Mark Windholtz, Ralph Johnson, Uncle
Bob Martin, John Brewer, Phil Goodwin, Jean-Marc Heneman, Erik
Meade, Alan Francis, Josu Oyanguren, Jim Stearns, Joel Jones, Bill
Caputo, Randy Coulman, Andrew Nielsen, Brian Button, Don Wells,
Gary Clayburg, James Goebel, Paul Sinnett, Bill deHora, Andreas
Stankewitz, Frank Westphal, Georg Tuparev, Stuart Donovan, Joi Ellis,
Alistair Cockburn, Matt Simons, Rob Mee, and Joshua Kerievsky.

Kent would like to thank Cindee, Bethany, Lincoln, Lindsey, Forrest,
and Joélle for their gift of time. Also, watching my brilliant coauthor
Martin learn to skip rocks was the purest joy I’ve had in a good long
time.

Martin would like to thank the folks at ThoughtWorks for trying
and pushing beyond many of these ideas and for giving him the time to
write this. But especially to thank Cindy for more reasons than would
fit in this book.

Together, we’d like to thank our editor, Mike Hendrickson, and the
staff at AWL: Heather Peterson, Heather Olszyk, Mike Guzikowski,
and Tyrrell Albaugh.

Thanks to Bob Coe and Ron Jeftries for trusting us, then going
beyond.

Our deepest thanks go to Robert Cecil “Uncle Bob” Martin. You’ll
find many of his words and thoughts in these pages.

-~

Contents

o /‘(a P
Foreword xi
=l A S I TIT. T T xiii
Ackrmowledgments. . s wvsscvwevnns i Romvromosonssvonss v xvii
Chapter 1 WhyPlan? i 1

We plan to ensure that we are always doing the most important thing left
to do, to coordinate effectively with other people, and to respond quickly to
unexpected events.

Chapter 2 FeaF: « « csmcss 55 5o wue 5 65 65 Bt s pivk sy aimes ous s 7
Software development is risky. People involved have many fears of what
may go wrong. To develop effectively we must acknowledge these fears.

Chapter 3 Driving Software« .« covvvnnriiniesnstonns 11

We use driving as a metaphor for developing software. Driving is not
about pointing the car in one divection and holding to it; dviving is about
making lots of little course corvections.

Chapter 4 Balancing Power 15

Our planning process velies on clearly separating the voles of business
people and software people. This ensuves that business people make all the
business decisions and software people make all the technical decisions.

Chapter 5 Overviews 21

The XP process has veleases that take a few months, that divide into two-
week iterations, that divide into tasks that take a few doys. Planning
allocates stovies (chunks of function) to veleases and itevations in reaction
to the vealities of development.

Chapter 6 Too MuchtoDoovooveiviniivnnssonsannns 25

When you are overloaded, don’t think of it as not having enough time;
think of it as having too much to do. You can’t give yourself more time,
but you can give yourself less to do, at least for the moment.

Chapter 7 Four Variables. 27

We use four variables to help us think about how to control a project: cost,
quality, time, and scope. They ave intervelated but affect each other in
Strange ways.

Chapter 8 Yesterday’s Weather 33

As the basis for your planning, assume you’ll do as much this week as you
did lnst week.

Chapter 9 Scoping a Project 35
To get a quick feel for how big the project is, run the planning process at
coarse resolution.

Chapter 10 Release Planning. 39
In release planning the customer chooses a few months’ worth of stovies,
typically focusing on a public release.

Chapter 11 Writing Stories. 45

The story is the unit of functionality in an XP project. We demonstate
progress by delivering tested, integrated code that implements a story. A
story should be understandable to customers and developers, testable,
valuable to the customer, and small enough so that programmers can
build half & dozen in an iteration.

Chapter 12 Estimation 57

Base your story estimates on a similar story you’ve alveady done. This story
will take about the same amount of time as a comparable story.

viii Contfents

Chapter 13 Ordering the Stories 63

The wmost imporvtant stovies to do first ave the ones that contain the
highest business value. Beware of sequencing stovies based on technical
dependencies. Most of the time the dependencies ave less important than
the value.

Chapter 14 Release Planning Events. 71

Various events cause the team to do a little velease planning. The customer
adds and changes the priovities of stories, developers estimate stories, and
the team notices if it has too much or too little to do.

Chapter 15 The First Plan 75

The first plan is the bardest and least accurate part of velease planning.
Fortunately you only have to do it once.

Chapter 16 Release Planning Variations. 79

Some local adaptations of the release planning are shorter releases, longer
releases, and shorter stovies.

Chapter 17 Iteration Planning. 83

Ench iteration is planned by breaking down the stories for that iteration
into tasks. Tasks ave scheduled by asking programmers to sign up for the

tasks they want, then asking them to estimate theiv tasks, then vebalancing
QS NECESSAT'Y.

Chapter 18 Iteration Planning Meeting 87

At the beginning of an itevation the team creates an iteration plan. This
plan breaks down the iteration into development tasks of & few days, each
with a programmer vesponsible for its completion.

Chapter 19 Tracking an Iteration 95
A couple of times o week, the tracker checks progress on the iteration to see
how things are going.

Chapter 20 Stand-up Meetings 105

Have a shovt meeting once a dny so everybody knows what’s going on, and
what’s not.

Confents ix

Chapter 21 Visible Graphs 107

Anyone should be able to sense the state of the project by looking at a
handful of graphs in the team’s working arvea.

Chapter 22 Dealing withBugs 113

Schedule bug fixes with stories so the customer can choose between fixing
bugs and adding further functionality.

Chapter 23 Changestothe Team 117
When the team changes, how does that affect your planning?
Chapter 24 Tools 119

Stick with simple tools, like pencil, paper, and whiteboard.
Communication is more important to success than whizbany.

Chapter 25 Business Contractsccccovovo.... 121

Traditional business velationships require a little tweaking if you’re going
to plan and execute a project with XP.

Chapter 26 Red Flagsccvuiiiin. .. 125

Here arve some dicey situations we’ve seen move than once and what we
wished we’d done about them.

Chapter 27 Your Own Process.cc.cooo... 129

No two XP projects will ever act exactly alike. Once you get comfortable
with the basic process, you will grow it to fit your situation more precisely.

X Contents

Chapter 1

Why Plan?

The best-laid schemes o’ mice an’men
Gang aft a gley.
—Robert Burns, “To a Mouse”

We plan to ensure that we are always doing the most important
thing left to do, to coordinate effectively with other people, and to
respond quickly to unexpected events.

When Kent was about ten, he went fly-fishing for the first time in
the Idaho panhandle. After a fruitless, sweaty day in pursuit of brook
trout, he and his friends headed for home. After half an hour of stum-
bling through dense trees, they realized they were lost. Kent started to
panic—fast breathing, tunnel vision, chills. Then someone suggested a
plan—they would walk uphill until they hit a logging road they knew
was up there. Instantly, the panic disappeared.

Kent was struck at the time by the importance of having a plan.
Without the plan, he was going to do something stupid, or just go
catatonic. With the plan he was calm again.

Plans in software development work the same way. If you know you
have a tight deadline, but you make a plan and the plan says you can make
the deadline, then you’ll start on your first task with a sense of urgency
but still working as well as possible. After all, you have enough time.
This is exactly the behavior that is most likely to cause the plan to come
true. Panic leads to fatigue, defects, and communication breakdowns.

But we’ve also seen plans lead to trouble. They can be a huge time
sink, dragging days out of people who’d rather be doing something
productive. Plans can be used as a stick to beat people with, and worst
of all, they can conceal trouble until it’s too late to deal with it.

Why We Should Plan

A ‘ln.._u.,ug,".
(W""ﬂ(ﬂul‘

\ (@i

e

We don’t plan so we can predict the future. Business and software
are changing too rapidly for prediction to be possible. Even if it were
possible to predict what we needed in three years, it wouldn’t necessar-
ily help because between now and then we need so many different
things.

The more obvious it is that you should do something, the more
important it is to ask why. You must do some planning when tackling a
serious software development project. Therefore, before you start plan-
ning a project, you have to understand why you need to carry out the
project. Without understanding why you need the project, how will
you be able to tell if you have succeeded?

We plan because

¢ We need to ensure that we are always working on the most
important thing we need to do.

¢ We need to coordinate with other people.

2 Chapter 1 Why Plan?

< When unexpected events occur we need to understand the
consequences for the first two.

The first is the obvious reason for planning. There’s nothing more
frustrating than working hard on a part of the system only to find that
it doesn’t really matter and gets scrapped in the next release of the sys-
tem. Time spent doing one thing is time not spent doing something
else, and if that something else is important then we may fail.

Say it’s two o’clock and we’re in Boston. We want to drive up to
Acadia, but we’d also like to get haircuts and hit Freeport for camping
gear. Last time we drove up to Acadia it took us five hours with no
stops. So we see some options. If we shoot straight up to Acadia we can
be there by seven o’clock. If we want to stop for dinner on the way, say
an hour, we will be there by eight. To get haircuts we’d need another
hour, so that would be nine. Visiting Freeport would add another hour.
We look at what’s most important to us. If we want to be fed,
equipped, not too late, and we could care less about our appearance,
we might decide to drop the haircut. A plan helps us see our options.

Coordination is why everyone else wants us to plan. We get a call
from our wives to meet for dinner in Bar Harbor. Since it’s two o’clock
we know we can meet them if we drive right up, stop in Freeport, and
be there around eight. Software is full of such coordination: marketing
announcements, financial periods, or management promises. Planning
allows us to get an idea of what is reasonable.

But planning is only as good as the estimates that the plans are based
on, and estimates always come second to actuals. If we hit a horrible
traffic jam, all the planning in the world can’t help us make that dinner
date. The real world has this horrible habit of destroying plans, as Mr.
Burns noted in this chapter’s opening quote.

Planning still helps when the real world intrudes because it allows us
to consider the effects of the unexpected event. Leaving at two o’clock,
we hit bad traffic and don’t get to Portland until five. We know we usu-
ally get there after an hour and a half, so our experience (and plan) tells
us to call our friends to put dinner back to half past eight and drop the
visit to Freeport. Planning allows us both to adjust what we do and to
coordinate with others. The key is to adjust the plan as soon as we
know the effect of the event. Our wives would much rather know
about our delay at five than at eight, and it would be really annoying to
spend time in Freeport and only later realize that we’ve really screwed

Why We Should Plan 3

