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Foreword

In On War, Carl von Clausewitz tells us that military history is a
pendulum swinging back and forth between the relative advantages of
armor and of mobility. The knights in shining armor were able to dom-
inate any knight without, but they were no match for the quick, nearly
naked pony warriors that swept across the plains with Genghis Kahn
and his Mongols. Light cavalry itself was doomed as soon as there were
tanks, and tanks were no match for fleet-footed Palestinian teenagers
with Sagger missiles. With the Maginot Line, the French were gam-
bling that the pendulum had swung again toward armor, but it hadn’t,
and the Germans simply went around it.

In the field of IT, we are just emerging from a time in which armor
(process) has been king. And now we are moving into a time when only
mobility matters. Building a product the right way still sounds like a
laudable goal, but—Ilet’s face it—what really matters today is building it
fast. Because we are process-obsessed in our field, we have tended to
react to this new imperative as we reacted to the imperatives thrust
upon us in the 1980s and 1990s. We have asked, “What shall we add to
our process to deal with this new situation?” No answer to that ques-
tion is going to be right because the question itself is wrong.

What the new mobility imperative requires is that we subtract from
process: We need to get light.

“Getting light” means more than just abandoning heavy process and
its attendant mountain of documentation. It means investing in people
so they can work quickly and effectively without formal process and



without generating a ton of paper. No one has a better vision of how
this is done than Kent Beck and Martin Fowler.

The XP movement they have founded is a way to make IT projects
light and quick. The principles of XP are not just another methodology,
another process. They are the antithesis of process. They are means to
make process irrelevant.

Because XP projects are completely different, it stands to reason that
managing them is different too. Planning Extreme Programming focuses
on how a team of XP-empowered developers is optimally led. Beck and
Fowler’s prescriptions are often wry, sometimes wise, and almost always
bang on target.

XP is the most important movement in our field today. I predict that
it will be as essential to the present generation as the SEI and its Capa-
bility Maturity Model were to the last.

Tom DeMarco
Camden, Maine
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This is a book about planning software projects. We are writing it
mostly for project managers—those who have to plan and track the
correspondence of the planning with reality. We also are writing it for
programmers and customers, who have a vital role to play in planning
and developing software.

Planning is not about predicting the future. When you make a plan
for developing a piece of software, development is not going to go like
that. Not ever. Your customers wouldn’t even be happy if it did,
because by the time the software gets there, the customers don’t want
what was planned; they want something different.

Like so many, we enjoy Eisenhower’s quotation: “In preparing for
battle I have always found that plans are useless, but planning is indis-
pensable.”’ That’s why this isn’t a book about plans; it’s about plan-
ning. And planning is so valuable and important, so vital, that it
deserves to go on a little every day, as long as development lasts.

If you follow the advice in this book, you are going to have a new
problem to solve every day—planning—but we won’t apologize for
that, because without planning, software development inevitably goes
off the rails.

The scope of this book is deliberately narrow. It covers how to plan and
track software development for XP projects. It’s based on our experience

1. Richard Nixon, Six Crises (New York: Touchstone Press, 1990).



as consultants and coaches, together with the experience of the grow-
ing band of early adopters who are using XP.

As a result this isn’t a book about the whole of project management.
We don’t cover typical project manager jobs such as personnel evalua-
tion, recruiting, and budgeting. We don’t address the issues of large
projects with hordes of developers, nor do we say anything about plan-
ning in the context of other software processes, or of planning other
activities. We think there are principles and techniques here that every-
one can use, but we have stuck to the parts of the process we know—
getting everybody on the team pointed in one direction, discovering
when this is no longer true, and restoring harmony.

XP (Extreme Programming) is a system of practices (you can use the
m-word if you want to; we’d rather not, thank you) that a community
of software developers is evolving to address the problems of quickly
delivering quality software, and then evolving it to meet changing busi-
ness needs.

XP isn’t just about planning. It covers all aspects of small team software
development—design, testing, implementation, deployment, and main-
tenance. However, planning is a key piece of the XP puzzle. (For an over-
view of XP, read Extreme Programming Explained: Embrace Change.
While you’re at it, buy copies of all of the rest of our books, too.)

XP addresses long projects by breaking them into a sequence of self-
contained, one- to three-week mini-projects. During each iteration

¢ Customers pick the features to be added.

< Programmers add the features so they are completely ready to be
deployed.

¢ Programmers and customers write and maintain automated tests
to demonstrate the presence of these features.

¢ Programmers evolve the design of the system to gracefully sup-
port all the features in the system.

Without careful planning, the process falls apart.

< The team must choose the best possible features to implement.

¢ The team must react as positively as possible to the inevitable
setbacks.

< Team members must not overcommit, or they will slow down.
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¢ The team must not undercommit, or customers won’t get value
for their money.

¢ Team members must figure out clearly where they are and report
this accurately, so that everyone can adjust their plans accordingly

The job of the daily planner is to help keep the team on track in all
these areas.

We come by our project planning ideas by necessity. As consultants,
we are usually introduced to projects when they are mostly dead. The
projects typically aren’t doing any planning, or they are drowning in
too much planning of the wrong sort.

The resulting ideas are the simplest planning ideas we could think of
that could possibly work. But above all, remember all the planning
techniques in the world, including these, can’t save you if you forget
that software is built by human beings. In the end keep the human
beings focused, happy, and motiviated and they will deliver.

Kent Beck, Merlin, Oregon
Martin Fowler, Melrose, Massachusetts http: //www.martinfowler.com
July 2000

I have a cunning plan.
—Baldrick, Blackadder
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Chapter 1

Why Plan?

The best-laid schemes o’ mice an’men
Gang aft a gley.
—Robert Burns, “To a Mouse”

We plan to ensure that we are always doing the most important
thing left to do, to coordinate effectively with other people, and to
respond quickly to unexpected events.

When Kent was about ten, he went fly-fishing for the first time in
the Idaho panhandle. After a fruitless, sweaty day in pursuit of brook
trout, he and his friends headed for home. After half an hour of stum-
bling through dense trees, they realized they were lost. Kent started to
panic—fast breathing, tunnel vision, chills. Then someone suggested a
plan—they would walk uphill until they hit a logging road they knew
was up there. Instantly, the panic disappeared.

Kent was struck at the time by the importance of having a plan.
Without the plan, he was going to do something stupid, or just go
catatonic. With the plan he was calm again.

Plans in software development work the same way. If you know you
have a tight deadline, but you make a plan and the plan says you can make
the deadline, then you’ll start on your first task with a sense of urgency
but still working as well as possible. After all, you have enough time.
This is exactly the behavior that is most likely to cause the plan to come
true. Panic leads to fatigue, defects, and communication breakdowns.



But we’ve also seen plans lead to trouble. They can be a huge time
sink, dragging days out of people who’d rather be doing something
productive. Plans can be used as a stick to beat people with, and worst
of all, they can conceal trouble until it’s too late to deal with it.

Why We Should Plan
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We don’t plan so we can predict the future. Business and software
are changing too rapidly for prediction to be possible. Even if it were
possible to predict what we needed in three years, it wouldn’t necessar-
ily help because between now and then we need so many different
things.

The more obvious it is that you should do something, the more
important it is to ask why. You must do some planning when tackling a
serious software development project. Therefore, before you start plan-
ning a project, you have to understand why you need to carry out the
project. Without understanding why you need the project, how will
you be able to tell if you have succeeded?

We plan because

¢ We need to ensure that we are always working on the most
important thing we need to do.

¢ We need to coordinate with other people.

2 Chapter 1 Why Plan?



< When unexpected events occur we need to understand the
consequences for the first two.

The first is the obvious reason for planning. There’s nothing more
frustrating than working hard on a part of the system only to find that
it doesn’t really matter and gets scrapped in the next release of the sys-
tem. Time spent doing one thing is time not spent doing something
else, and if that something else is important then we may fail.

Say it’s two o’clock and we’re in Boston. We want to drive up to
Acadia, but we’d also like to get haircuts and hit Freeport for camping
gear. Last time we drove up to Acadia it took us five hours with no
stops. So we see some options. If we shoot straight up to Acadia we can
be there by seven o’clock. If we want to stop for dinner on the way, say
an hour, we will be there by eight. To get haircuts we’d need another
hour, so that would be nine. Visiting Freeport would add another hour.
We look at what’s most important to us. If we want to be fed,
equipped, not too late, and we could care less about our appearance,
we might decide to drop the haircut. A plan helps us see our options.

Coordination is why everyone else wants us to plan. We get a call
from our wives to meet for dinner in Bar Harbor. Since it’s two o’clock
we know we can meet them if we drive right up, stop in Freeport, and
be there around eight. Software is full of such coordination: marketing
announcements, financial periods, or management promises. Planning
allows us to get an idea of what is reasonable.

But planning is only as good as the estimates that the plans are based
on, and estimates always come second to actuals. If we hit a horrible
traffic jam, all the planning in the world can’t help us make that dinner
date. The real world has this horrible habit of destroying plans, as Mr.
Burns noted in this chapter’s opening quote.

Planning still helps when the real world intrudes because it allows us
to consider the effects of the unexpected event. Leaving at two o’clock,
we hit bad traffic and don’t get to Portland until five. We know we usu-
ally get there after an hour and a half, so our experience (and plan) tells
us to call our friends to put dinner back to half past eight and drop the
visit to Freeport. Planning allows us both to adjust what we do and to
coordinate with others. The key is to adjust the plan as soon as we
know the effect of the event. Our wives would much rather know
about our delay at five than at eight, and it would be really annoying to
spend time in Freeport and only later realize that we’ve really screwed
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