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Preface

Modular forms play an essential role in Number Theory. Furthermore the
importance of modular forms has continued to grow in many areas of mathematics
including the infinite dimensional representation theory of Lie groups and finite
group theory. The aim of this book is to introduce some basic theory of modular
forms of one variable.

Originally this book was written in Japanese under the title “Automorphic
forms and Number Theory” by Koji Doi and myself and published by Kinokuniya,
Tokyo, in 1976. When the English translation was planned, the first named author
proposed that only the chapters written mainly by me be translated together with
some additional material and published under my sole authorship.

In Chapters 1 and 2, the general theory of Fuchsian groups, automorphic forms
and Hecke algebras is discussed. In Chapter 3, I summarize some basic results on
Dirichlet series which are necessary in the succeeding chapters. In Chapter 4, the
classical theories of modular groups and modular forms are studied. Here the
usefulness of Hecke operators as well as the remarkable relation between modular
forms and Dirichlet series obtained by Hecke and Weil have been emphasized.
Chapter 5 briefly reviews quaternion algebras and their unit groups, which are also
Fuchsian groups and which play a role similar to that of modular groups in their
application to number theory. Chapter 6 is devoted to the trace formulae of Hecke
operators by Eichler and Selberg. The formulae have been generalized by many
people including H. Shimizu, H. Hijikata and H. Saito. A formula computable by
them is also offered. In our Japanese edition, as an introduction to the automorphic
forms of several variables, Chapter 7 deals with Eisenstein series of Hilbert modular
groups and the application to values of zeta-functions (following Siegel). As a result
of important series of recent work by Shimura on Eisenstein series, I decided to
rewrite it to introduce some of his results on Eisenstein series restricting it to only
the case of one variable.

I should like to express'my deepest gratitude to Professor Goro Shimura, who
constructed the essential part of the arithmetic theory of automorphic functions, for
his valuable suggestions and encouragement.

The translation of Chapters 1 through 6 was prepared by my colleague
Professor Yoshitaka Maeda. He also corrected mistakes in the original text, and
gave me many appropriate suggestions. I express my deep and sincere thanks to him
for his collaboration. I also express my hearty thanks to Professor Haruzo Hida
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whose lectures at Hokkaido University during 1983-84 were very helpful for the
preparation of the present volume, and to Professor Hiroshi Saito and Dr. Masaru
Ueda who kindly read the manuscript very carefully as a whole or in part and made
many valuable suggestions.

Sapporo, February 1989 Toshitsune Miyake



Notation and Terminology

1. Wedenote by Z, Q, R and C, the ring of rational integers, the rational number
field, the real number field and the complex number field, respectively. For a
rational prime p, Z, and Q, denote the ring of p-adic integers and the field of p-adic
numbers, respectively. We also denote by R, , R_ and C', the set of positive real
numbers, the set of negative real numbers and the set of complex numbers with
absolute value 1, respectively:

R, ={xeR | x>0},R_={xeR | x<0},C'={zeC | |z| =1}

2. For a complex number z, we denote by Re(z) and Im(z), the real part and the
imaginary part of z, respectively. When z is a non-zero complex number, we denote
by arg(z) the argument of z, which we specify by —n < arg(z) < n. For a real
number x, we denote by [x] the largest integer not exceeding x. When x is a non-
zero real number, sgn(x) denotes + 1 or — 1 according as x > 0 or x < 0.

3. For aring R with unity 1, we denote by R * the group of invertible elements in
R. Further we write

M, (R) = the set of square matrices of degree n over R,
GL,(R)={aeM,(R) | det()eR™},
SL,(R)={0eM,(R) | det(x)=1}.

4. We denote by II the disjoint union of sets. For a finite set 4, | 4| denotes the
number of elements in A. We also denote by # {..... }, the number of the
elements of the set given by { . ... .. }.

5. When g,,..., ¢, are elements of a group G, {¢g;,..., ¢.» denotes the
subgroup of G generated by ¢g,, ..., ¢,. Whenv,, ..., v, are vectors in a vector
space V over a field K, (v, ..., v, denotes the subspace of V generated by
vy,...,,. For mappings g:A — B and f: B — C, we denote by f° g the mapping
of A to C given by

(feg)@)=f(g(@) (aeA).
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Chapter 1. The Upper Half Plane and
Fuchsian Groups

We explain basic properties of the upper half plane H in § 1.1 through § 1.4. We
introduce Fuchsian groups in §1.5 which play an essential role throughout the
book. In § 1.6 through § 1.8, we study the quotient spaces of H by Fuchsian groups
and induce the structure of Riemann surfaces on them.

§ 1.1. The Group of Automorphisms of the Upper Half Plane
We denote by P the Riemann sphere C U {c0} and define the action of an element
a=[a b] of GL,(C) on P by

cd

az+b
oz =
cz+d

(1.1.1) (zeP).

This mapping “z+ az” is complex analytic from P into itself. We put
(1.1.2) j,z)=cz+d (zeC).

If ze C and j (o, z) # 0, then we have

z az+b . oz
(1.1.3) a[l]=[c2+d]=j(a,z)|:1:|.

This equality also holds when considering each constituent as a meromorphic
function. Calculating aﬂ[i] (o, Be GL,(C)) in two ways, we see that
. . a\pz . ap)z
it 82 (8| 7 | =082 7]
From this equality, we obtain
(1.1.4) @P)z=a(fz) (1, BeGL,(C), zeP),
and

(1.L.5) J@p,2)=j(2% B2)j(B,2) (& BeGL,(C), zeC).
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By (1.1.4), the mapping “z+>a~'z” is the inverse mapping of “z+—>az”, and
therefore, “z+>az” is an automorphism of the Riemann sphere P. This auto-
morphism is called a linear fractional transformation. Putting f=a"! in (1.1.5),
we see

(1.1.6) j ) =jle,a"tz)"h

Lemma 1.1.1. A linear fractional transformation maps circles and lines on C into
circles or lines on C.

b
Proof. We put for an element B=|:z d:| of GL,(C)

Cy={zeP||Bz|=1}.

Since z belongs to C; N Cif and only if jaz+b| = |cz+d|, C; n Cis a line (if a=c) or

a circle (the Appolonius circle). Conversely it is easily seen that circles and lines on

C can be expressed as C; n C with some fe GL,(C). Let o be an element of GL,(C)

and denote by a(C;) the image of C; by . Since a(Cpy) = Cy,-1, 2(Cy) N Cis again a

circle or a line on C. O
We define two domains H and K of C by

H={zeC| Im(z)>0}
and
K={zeC|lz|<1}.

The domains H and K are called the upper half plane and the unit disk, respectively.

Lemma 1.1.2. The upper half plane H and the unit disk K are complex analytically
isomorphic.

1 —i . . .
Proof. Put p= l:l i:l. Then “z> pz” is an automorphism of P, and satisfies

z—i
|pz|—‘z—+i'<1 (zeH).

Since we see

_ Cw+1 1—|w)?
I 1 :I =
m(p~'w) m<l—w+l> |1—w|2>0 (weK),
p gives an analytic isomorphism of H onto K. O

We are interested in functions on H which satisfy certain transformation
equations for automorphisms of H. (We say that they have automorphy.) We first
study automorphisms of H. We denote by Aut(H) and Aut(K) the groups of all

(complex analytic) automorphisms of H and K, respectively. If o = I:a s:’ €GL,(R),
c
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and zeH, then
det(a) Im(z)

(1.1.7) Im(ez) ==~

In particular, if det(«) > 0, then we have Im(az)>0, and therefore, “z+— az” induces
an automorphism of H. We put

GL} (R)= {ae GL,(R)| det(x)>0},

and denote by 1(x) (xe GL; (R)) the automorphism “z+ az” of H. Then it follows
from (1.1.4) that this mapping

1: GLS (R)aar>1(x)e Aut(H)

is a group-homomorphism.

Now we put
S0, (R)= cosf sinf 0<0<2x
2| —sin @ cos || ’

b .
We identify ae R* with |:g S:IEGL; (R). If for a=|:z d]EGLZ(R)’ (o) is the

identity of H, then a belongs to R*, since ¢z +(d —a)z —b=0 for any ze H. Now
we have

Theorem 1.1.3. (1) For any zeH, there exists an element o in SL,(R) satisfying
ol = z.
(2) The homomorphism 1 induces an isomorphism

GL} (R)/R* ~SL,(R)/{ +1} ~ Aut(H).
(3) SO, (R)={xeSL,(R)|ai=1i}

and
R*-SO,(R)={xeGL; (R)|ai=i}.

y x
01
ai=z; this proves (1). The first isomorphism of (2) is obvious. To see the second
isomorphism, we have only to verify the surjectivity. For this purpose, it is sufficient
to show that if an element y of Aut(H) satisfies /(i) =1, then there exists an element
f in SO,(R) such that y=1(f). In fact, for each element ¢ € Aut(H), we get an
element o€ SL,(R) satisfying «~* ¢(i) =i by (1). Then taking i(«~')¢ in place of y,
we have ¢ =1(xf) for some B e SO, (R); this implies : is surjective. Now let  be an
element of Aut(H) such that y/(i)=i. We put

p(2)=(z—i)/(z+i)  (zeH),

which is an isomorphism of H onto K. Since p(i)=0, n=pyp~! is an auto-
morphism of K such that #(0)=0. Applying Schwarz’s theorem to n and !, we see
that

Proof. For any z=x+yieH, put a = \/;‘ ! |: ] Then a belongs to SL,(R) and

1

nw)[=Iwl  (weK).
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A further application of Schwarz’s theorem shows that there exists 8(0 < 0 <) such

that .
nw)=e¥w  (weK).

Thus pulling back the function n by p~! to H, we see that

(cos B)z+sin 6
(—sin 0)z+cos 0

Y@)=p 'np(z)= (zeH);

cos 6 sin 6

namely ¥ =1(ky) with k, = |:—sin 0 cos 0

JGSOZ(IR). This implies (2) and (3). O

Now let us consider Aut(K). Put

I1 0 1 0
su(, 1)={g€SLz(C)|'g[O _l]gz[o —ljl}

={g=['f 'f] u, veC, |u|2—|v|2=1}.
VU
Since

| —i
(1.1.8) pSLy(R)p™"' =5U(1, 1), p=[1 i]
we see by Lemma 1.1.2 and Theorem 1.1.3(2)
(1.1.9) Aut(K)~ SU(1, 1)/{+1}.

§1.2. Actions of Groups

In this section, we prepare general theory on topological spaces and transformation
groups to apply it to the upper half plane H.

Let G be a group and X a topological space (resp. a complex domain). We say
that G acts on X if there exists a mapping

GxX3(g,x)>gxeX
satisfying the following three conditions:

(i) for each element g of G, “X3x+>gxeX” is a continuous (resp. complex
analytic) mapping;

(ii) (gh)x =g(hx) for two elements g and h of G;

(iii) for the unit element 1 of G, 1x = x for any element x of X.

Since for any element g of G, “x+ g~ 'x” is the inverse mapping of “x+— gx”, we see
that if G acts on X, then

(i') for each element g of G, “Xsx+>gxeX” is a topological (resp. complex
analytic) automorphism of X.
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We assume hereafter that G acts on X. For an element x of X we put
G,=1{geGlgx=x},

and call it the stabilizer of x. It is obvious that for any element g of G,
(1.2.1) G,x=9G,g™ .

An element x of X is called a fixed point of ge G if
gx=Xx.

This is equivalent to saying g € G,. Further for each element x of X, a subset of X
defined by

Gx={gx|geG}

is called the G-orbit of x. The set of all G-orbits in X is denoted by G\ X. Since either
Gx =Gy or Gx n Gy = J for any two elements x, y of X, X can be expressed as a
disjoint union of G-orbits:

X =]]Gx.

In particular, if X itself is a G-orbit, then we say that G acts transitively on X. This is
equivalent to saying that

(1.2.2)  for any two elements x, y of X, there exists an element g of G such that
gx=y.

Therefore, it follows from (1.2.1) that if G acts transitively on X, then all the
stabilizers are conjugate.

Now let us denote by 7 the canonical mapping of X onto the set of all G-orbits
G\ X; in other words, 7 is a mapping which corresponds any element x of X to the
element Gx of G\ X:

Xax—n(x)=GxeG\X.

We induce the strongest topology on G\ X under which the above projection 7 is
continuous. More precisely, it is given by defining that a subset U of G\ X is open if
and only if the inverse image =~ *(U) of U by = is open in X. The topological space
G\ X with this topology is called the quotient space of X by G. Since for an open
subset U of X, we have

" (n(U) =) gU gU = {gu|ueU},

geG

n(U) is again open in G\ X. Thus 7 is an open continuous mapping of X onto the
quotient space G\ X.
If a group G has a topological structure of a Hausdorff space, and the two
mappings
G x G>3(g, h)—> ghegG, Gag—g 'eG

are continuous with respect to its topology, then G is called a topological group. Let



6 1. The Upper Half Plane and Fuchsian Groups

G be a topological group and assume that G acts on X. Then we say that a
topological group G acts on a topological space X, if the additional condition (iv)
below is satisfied:

(@iv) G x X 3(g, x)—gxe X is continuous.

If a topological group G acts on a topological space X, then all the stabilizers are
closed subgroups of G. Conversely, let G be a topological group and K a closed
subgroup of G. Then K acts on G by right multiplication. We denote by G/K the
quotient space of G by K, and call it the space of the right cosets of G by K.

Theorem 1.2.1. Assume that a topological group G acts transitively on a topological
space X. If G is a locally compact group with a countable basis, and X is a locally
compact Hausdorff space, then for each element x € X, the space of the right cosets
G/G, is homeomegphic to X by the correspondence “gG, > gx”.

Proof. 1t is obvious that the correspondence is bijective. Thus it is sufficient to
show that it is bicontinuous. From the definition of the topology on G/G,, it is
equivalent to saying that “g+ gx” is an open continuous mapping of G to X. The
continuity is obvious by definition, and therefore it is sufficient to show that this
mapping is also open. Let us prove that for any open set U of G, Ux = {gx | ge U}
is also open in X. Let gx (g€ U) be any point of Ux. Take a compact neighbor-
hood ¥ of the unit element of G so that V"' =V and gV? < U. Since G has a
countable basis, there exist countably many elements g, (n=1, 2, . . .) satisfying
G=J.219.V. Put W,=g,Vx, then X = J;2, W,. Since W, is a compact set in
the Hausdorff space X, it is closed. Now suppose that no W, contains an open
subset. Since X is regular, we find inductively non-empty open subsets U, so that
the closures U, are compact and

Un—l_Wn—IDUn (ng2)

Then we see that U; > U, > U3 > ... Since (), U, # & and ()2, U, has no
common point with any W,, this contradicts the fact X = )~ , W,. Hence there
exists a set W, =g, Vx which contains an open subset of X. Since g,Vx is
homeomorphic to ¥x, ¥x also contains an open subset S. For an element h of V
such that hxe S, we have

gxegh 1S c gV?x < Ux.
Therefore gx is an interior point of Ux. This proves that Ux is open. O

Now Theorem 1.1.3 implies that the topological group SL,(R) acts transitively
on the complex domain H and the stabilizer of i is SO,(R). Thus, applying the
above theorem to X =H and G =SL,(R), we obtain the following

Corollary 1.2.2. The space of the cosets SL,(R)/SO,(R) is homeomorphic to H by the
correspondence “aSO,(R)— ai”.



