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Preface

There have been two earlier Cambridge Tracts that have touched
upon the Hardy-Littlewood method, namely those of Landau, 1937,
and Estermann, 1952. However there has been no general account of
the method published in the United Kingdom despite the not
inconsiderable contribution of English scholars in inventing and
developing the method and the numerous monographs that have
appeared abroad.

The purpose of this tract is to give an account of the classical forms
of the method together with an outline of some of the more recent
developments. It has been deemed more desirable to have this
particular emphasis as many of the later applications make important
use of the classical material.

It would have been useful to devote some space to the work of
Davenport on cubic forms, to the joint work of Davenport and Lewis
on simultaneous equations, to the work of Rademacher and Siegel
that extends the method to algebraic numbers, and to the work of
various authors, culminating in the recent work of Schmidt, on
bounds for solutions of homogeneous equations and inequalities.
However this would have made the tract unwieldy. The interested
reader is referred to the Bibliography.

It is assumed that the reader has a familiarity with the elements of
number theory, such as is contained in the treatise of Hardy and
Wright. Also, in dealing with one or two subjects it is expected that the
reader has a working acquaintance with more advanced topics in
number theory. Where necessary, reference is given to a standard text
on the subject.

The contents of Chapters 2,3,4,5,9, 10 and 11 have been made
the basis of advanced courses offered at Imperial College over a
number of years, and could be used as part of any normal post-
graduate training in analytic number theory.



Preface to second edition

At the time that the first edition was written, there had been relatively
little recent work on the central theory of the Hardy-Littlewood
method, namely that surrounding Waring's problem and associated
questions. Indeed, the work of Davenport and Vinogradov had taken
on the aspect of being written on tablets of stone. This is in complete
contrast to the current situation. In the last decade or so there has
been a series of important developments in the area. The tract is.
therefore, ripe for revision. and the opportunity has been taken to
give an introduction to this new material, and especially to the
important work of Wooley. Chapter 5 has been extensively rewritten
to take account of our new understanding of Vinogradov's mean
value theorem, and a completely new chapter has been added to
describe the new work on Waring’s problem. Fortunately the large
bulk of the material has not been superseded and the underlying ideas
still play an important réle in many of the new developments.



Notation

The letter k denotes a natural number, usually with k 2 2, and the
statements in which & appear are true for every posmve real number ¢.
The letter p is reserved for prime numbers.

The Vinogradov symbols <, > have their usual meaning, namely
that for functions fand g with g taking non-negative real values f < g
means | f] < Cy where C is a constant, and if moreover f is also non-
negative, then f > ¢ means g < f.

Implicit constants in the O, < and » notations usuaily depend on
k, s and & Additional dependence will be mentioned explicitly.

As usual in number theory. the functions ¢(x) and || « | denote ¢>™

and min|x—h| respectively. Occasionally the expression
heZ

min(X, 1/0) occurs, and is taken to be X.
The notation p” || n is used to mean that p is the highest power of p
dividing n.
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1

Introduction and historical
background

1.1 Waring’s problem

In 1770 E. Waring asserted without proof in his Meditationes
Algebraicae that every natural number is a sum of at most nine posi-
tive integral cubes, also a sum of at most 19 biquadrates, and so
on. By this it is usually assumed that he believed that for every natural
number k 2 2 there exists a number s such that every natural number
is a sum of at most s kth powers of natural numbers, and that the least
such s, say g(k), satisfies g(3) =9, g(4) = 19.

It was probably known to Diophantus, albeit in a different form,
that every natural number is the sum of at most four squares. The four
square theorem was first stated explicitly by Bachet in 1621, and a
proof was claimed by Fermat but he died before disclosing it. It was
not until 1770 that one was given, by Lagrange, who built on earlier
work of Euler. For an account of this theorem see Chapter 20 of
Hardy & Wright (1979). ‘

In the 19th century the existence of g(k) was established for many
values of k, but it was not until the present century that substantial
progress was made. First of all Hilbert (19094, b) demonstrated the
existence of g(k) for every k by a difficult combinatorial argument
based on algebraic identities (see Rieger, 19534, b, c; Ellison, 1971).
His method gives a very poor bound for g(k).

In the early 1920s Hardy and Littlewood introduced an analytic
method which has been the basis for numerical work by Dickson,
Pillai and others, and has led to an almost complete evaluation of

g(k). Since the integer
. /3y
=2{(5) ]

is smaller than 3* it can only be a sum of kth powers of 1 and 2. Clearly
the most economical representation is by [(3)*] — 1 kth powers of 2



2 Introduction and historical backround

and 2* — 1 kth powers of 1. Thus

3 3
g(k)>2*+|:<—2-) ]—2. (1.1)

It is very plausible that this always holds with equality, and the
current state of knowledge is as follows.
It has been shown that when

k I~ k7
GIE I

-
glk)=2"+ (é) -2 (1.3)

one has

but when

one has either
or

according as

TEHEE)]

is equal to 2* or is larger than 2* For the various contributions to the
proof of this, see the Bibliography.

Stemmler (1964) has verified on a computer that (1.2) (and so (1.3))
holds whenever k < 200000, and this has been extended to
471600000 by Kubina and Wunderlich (to appear). Mahler (1957)
has shown that if there are any values of k for which (1.2) is false, then
there can only be a finite number of such values. No exceptions are
known, and unfortunately the method will not give a bound beyond
which there are no exceptions.
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1.2 The Hardy-Littlewood method

Nearly all the above conclusions have been obtained in the following
way. A theoretical argument based on the analytic method of Hardy
and Littlewood produces a number C, such that every natural
number larger than C, is the sum of at most s, kth powers of natural
numbers where s, does not exceed the expected value of g(k). Then a
rather tedious, but often very ingenious, calculation enables a check
to be made on all the natural numbers not exceeding C,.

One of the features of the Hardy—- Littlewood method is that it can
be adapted to attack many other problems of an additive nature. The
method has its genesis in a paper of Hardy & Ramanujan (1918)
concerned mainly with the partition function, but also dealing with
the representation of numbers as sums of squares.

Let &/ = (a,,) denote a strictly increasing sequence of non-negative
integers and consider

20

Fiz)= 3 2z~ (Jzi < 1)

m=1
and its sth power

oW x

FzF= 3 ... ) z%*%om=% R (n)z",
mg=1 me=1 n=0
where R(n) is the number of representations of n as the sum of s
members of &, The objective is an estimate for R(n), at least when nis
large. By Cauchy’s integral formula
R (n)= ﬁ L F(zPz="" 'dz
where € is a circle centre 0 of radius p, 0<p < 1.

Hardy and Ramanujan discovered an alternative way of evaluating
the integral when a,, = m?. Suppose that p = | — 4 and that n is large,
and write e(x) = ™. Then the function F has ‘peaks’ when = = pelz)
is ‘close’ to the point e(a/q) with g ‘not too large'. In fact, F has an
asymptotic expansion in the neighbourhood of such points, roughly
speaking valid when |¢ —a/q| < 1/(q\/ n) and ¢ <\/ n. By Dirichlet’s
theorem on diophantine approximation every z under consideration
is in some such neighbourhood.
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The asymptotic expansion takes the form

F (pe<g+ﬂ)) ~§S(q. a)(1— pe(B))~ 2 (1.4)
where

S(g,a) = Z elam?/g).

This can be seen by dealing first with the case B = 0 by partitioning the
squares into residue classes modulo ¢ and then applying partial
summation. Thus, for s 2 5 one can obtain

R(n) ~ S (n)J (n) (1.5)
where
[ q
S,m=3 3 q *S(qaye(—an/q)
a=t (a.aq’;=l 1
and

1/2
Js(n)=C‘j (1 — pe(B))~*p~ "e(— pn)dp.

-1/2
The integral in J(n) is quite easy to estimate, and the series & (n)
reflects certain interesting number theoretic properties of the se-
quence of squares.

The expansion (1.4) corresponds to a singularity of the series F at
e(a/q) on its circle of convergence, and in view of this Hardy and
Littlewood coined the terms singular series and singular integral for
&,(n) and J(n) respectively.

After the First World War, Hardy & Littlewood (1920, 1921)
turned their attention to Waring's problem. Unfortunately, when
a,=m" with k=3, they could only show that the expansion
corresponding to (1.4) holds when

qsnl/k—z and sq-lnl/k—a—l’

a
a_—
q

and this only accounts for a small proportion of the points z on 4.
Since g~ 'S(g, a)—0 as g — oo (for (g, ) = 1) one might hope that at any
rate F is small compared with the trivial estimate (1 — p)~ '* = n'/* on
the remaining z, a hope reinforced by the fact that (am*) is uniformly
distributed modulo 1 when « is irrational. Indeed, Hardy and
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Littlewood were able to show that F is appreciably smaller than n'/*
on the remainder of # by an alternative argument having its origins in
Weyl's (1916) fundamental work on the uniform distribution of
sequences, the consequent statement about the size of F often being
called Weyl’s inequality. They further introduced the tegms major arcs
and minor arcs to describe the parts of ¥ where they used the analogue
of (1.4) and Weyl’s inequality respectively.

Later Vinogradov (1928g) introduced a number of notable refine-
ments, one of which was to replace F(z) by the finite sum

N
floy= 3 elam") (1.6)
m=1

where
N =[n']. (L7)
Now
flaF= Y Rm,n)e(oam)
m=1
where R (m,n) is the number of representations of m as the sum of s kth
powers, none of which exceed n. Thus
R(m,n)=R(m) (m<n).
Then a special case of Cauchy’s integral formula, namely the trivial
orthogonality relation

! 1 when h=0
J-o e(ah)da = {0 when h £0 (1.8)
gives
r f(afe(—an)de=R,n). (19)
1]

It is clear from the discussions above that g(k) is determined by
the peculiar demands of a few relatively small exceptional natural
numbers. Thus the more interesting problem is that of the estimation
of the number G(k), defined for k 2 2 to be the least s such that every
sufficiently large natural number is the sum of at most s kth powers of
natural numbers. It transpires that G(k) is much smaller than g(k)
when k is large and this naturally makes its evaluation much more
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difficuit. In fact the value of G(k) is only known when k=2 or 4,
namely

G(2) =4, G(4) = 16,

the latter result being due to Davenport (1939¢). Linnik (1943a) has
shown that G(3)<7 and Watson (1951) has given an extremely
elegant proof of this. When k > 3 all the best estimates available at
present for G(k) have been obtained via the Hardy-Littlewood
method. Even when k = 3 the Hardy-Littlewood method can be
adapted to give G(3) £ 7 (Vaughan, 1986¢). Chapters 2,4, 5,6, 7 and
12 are devoted to the study of G(k).

1.3 Goldbach’s problem

In two letters to Euler in 1742, Goldbach conjectured that every even
number is a sum of two primes and every number greater than 2 is a
sum of three primes. He included 1 as a prime number, and so in
modern times Goldbach’s conjectures have become the assertions
that every even number greater than 2 is a sum of two primes and
every odd number greater than 5 is a sum of three primes.

Hardy & Littlewood (1923a,b) discovered that their method could
also be applied with success to these problems, provided that they
assumed the generalized Riemann hypothesis. Thus they were able to
show conditionally that every large odd number is a sum of three
primes and that almost every even number is a sum of two primes.

In 1937, Vinogradov was able to remove the dependence on the
generalized Riemann hypothesis, thereby giving unconditional
proofs of the above conclusions. This line of attack on Goldbach’s
problems is investigated in Chapter 3. However, the nature of the
primes, and in particular the problem of their distribution in
arithmetic progressions, means that the further refinements of the
method (see Montgomery & Vaughan, 1975) are better viewed in the
context of multiplicative number theory and have therefore been
omitted from this tract.

For many generalizations of the methods described in Chapter 3
see Hua’s (1965) monograph.
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1.4 Other problems

The last thirty years have seen a large expansion and diversity of the
applications of the method, and in Chapters 8, 9, 10, 11 a number of
topics have been chosen to illustrate this development. The appli-
cations described there, particularly in Chapters 9 and 11 to general
forms and inequalities respectively, cover only a small part of the
work which has been undertaken in these areas, and should be viewed
as an introduction to the original papers listed in the Bibliography.

1.5 Exercises
1 Show that the number p(n) of solutions of the equation
X +...+x,=n

in non-negative integers x,, ..., x, is ( — 1)%(7%).
2 Show that the sum of the divisors of n, o(n) = Zm,,,m, satisfies

7!2 @0
a(n)= i Y q 2e(n)
q=1

where c,(n) is Ramanujan’s sum, i.e.
q

cm= 3 elan/q).
(a.a q—)i 1
3 Let P,Q denote real numbers with P > 1, Q = 2P. Show that the

intervals
{ala—a/ql<q7'Q™1}
with ¢ < P and (a,q) = 1 are pairwise disjoint.



2
The simplest upper bound for G(k)

2.1 The definition of major and minor arcs

The introduction of various refinements over the years, most notably
by Hua (1938b) has led to a simple proof that G(k) < 2* + 1 which
nevertheless illustrates many of the salient features of the Hardy~
Littlewood method. .
There is a good deal of latitude in the definition of major and minor
arcs, and the choice made here is fairly arbitrary.
Let n be large, suppose that N is given by (1.7) and that

1
=— P=N", - 2.1
¥ =100 @1
and let  denote a sufficiently small positive number depending only

on k. When 1 €a<qg<Pand @ag)=1,let
Mg, a) = {a:jx —afg| S N* "k} (2.2
The M(q, a) are called, for the historical reasons outlined above, the
major arcs, although in fact they are intervals. Let M denote the union
of the M(q, a). It is convenient to work on the unit interval
#H=(N""%1+N""% 2.3
rather than (0,1]. This avoids any difficulties associated with
having only ‘half major arcs’ at 0 and 1. Observe that M = #. The set
m =% \ M forms the minor arcs.
When a/q #a'/q’ and g, g' < N”, one has
A
q 4 qq 9 4
Thus the M(g, a) are pairwise disjoint.
By (1.9) (for brevity the suffix s is dropped)

]

a a

R(n)= J SfloYe( — an)da + J SflaYe( — an)da (2.4)
”n m

where f(a) is given by (1.6). Before proceeding with the estimation of
these integrals it is necessary to establish some auxiliary lemmas.



