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Preface

Zinc sulfide (ZnS) has shown unequaled utility for infrared windows that
require a combination of long-wavelength infrared (8-12 pum) transparency,
mechanical durability, and elevated temperature performance. Its unique set
of properties extends its usefulness to electroluminescent phosphors, optical
thin films used for filters and antireflection (AR) coatings, as well as various
other opto-electronic applications. High-optical-quality, chemical vapor
deposited ZnS windows several millimeters thick transmit visible light and
so have received attention as candidates for multi-spectral windows.

Naturally occurring zinc sulfide is well known as the primary ore of zinc. The
common names for the cubic form of ZnS all come from its superficial
resemblance to galena (lead sulfide, PbS), but ZnS does not yield any metal when
smelted. It was therefore called “blende™ or “zincblende™ (from the German
blenden, “to deceive™ or “to blind™), or “sphalerite” [from the Greek opakepdl
(sphaleros), “deceptive” or “treacherous.”]' A special white, transparent, or
colorless variety of sphalerite from Franklin, New Jersey, and Nordmark,
Sweden, is called cleiophane, which is nearly pure ZnS with only traces of
cadmium. Mineral sphalerite tends to have a large component of iron and
manganese, and some specimens are very black, so-called “black jack.” Mineral
cleiophane and sphalerite exhibit different-colored fluorescence under short-
wavelength and long-wavelength ultraviolet light, and are of interest to the
mineral collector. Wurtzite is a less common hexagonal form of ZnS, named
after the French chemist Charles-Adolphe Wurtz (1817-1884) by C. Friedel
when it was first identified from a Bolivian silver mine. Mineral hexagonal zinc
sulfide containing significant amounts of cadmium is known as pribramite.
Hexagonal zinc oxysulfide has been called voltzite or voltzine, though these
terms have been used to describe a lead oxysulfide as well.

Bulk ZnS for infrared windows is traditionally manufactured by chemical
vapor deposition (CVD) in large reactors. Deposition temperature and mole
fractions of the reactants, H>S gas and Zn vapor, have a large influence on

' Mellor, J.W., “Zinc and Cadmium Sulphides.” in 4 Comprehensive Treatise on
Inorganic and Theoretical Chemistry, 586-612, Longmans, Green, and Co., London
(1956).
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visible scatter and absorption. These effects have been ascribed to electronic
defects in the bandgap, hexagonal phase ZnS, and residual porosity, but the
exact mechanisms have never been adequately explained.

A multispectral form of ZnS can be created by taking traditionally grown
polycrystalline CVD ZnS, which is visibly yellow and opaque, and subjecting it
to a post-deposition heat treatment under pressure. The heat and pressure result
in recrystallization of the CVD ZnS, large grain growth, and a visibly clear and
colorless product. The kinetics of this post-process, as well as the dependence on
the platinum foil that typically encases the ZnS during heat treatment, remain
poorly understood. It is known that CVD materials grown under different
conditions do not behave identically when subsequently heat treated.

The purpose of this book is to review the physical properties of CVD ZnS
and their relationship to the chemical vapor deposition process that produced
them. We begin with the physics and chemistry of ZnS itself, including its
many polytypes. This establishes a basis for understanding the defect structure
and how it influences observed properties. Attention is then turned to the
CVD process and the resulting forms of ZnS with properties that vary widely
with processing conditions. To understand these variations, an in-depth look
at the material microstructure follows, including the effects of post-deposition
heat treatments.

For optical applications, the optical transmittance is of primary importance.
ZnS intrinsically exhibits very broadband transparency beginning in the
ultraviolet and extending through the infrared. This intrinsic transparency,
coupled with modest mechanical durability, makes it unique among available
infrared window materials. CVD ZnS optical properties are discussed, including
the effects on these optical properties of post-deposition heat treatment, with
comments on mechanisms for transparency improvements.

Finally, because the CVD process itself is central to the development of this
material, a brief history of this process is presented, beginning with its use in the
19" century as a coating technology. The evolution of CVD as a bulk-materials
process came later, and only by the mid-twentieth century was it beginning to
be utilized to produce CVD-formed products (most notably pyrolytic graphite).
This development was an important milestone, as it put in place the process
technology that was critical to the subsequent development of CVD ZnS. We
offer this information as a historical note to explain the success of the CVD ZnS
process as well as subsequent improvements in the process, including post-
deposition heat treatments, but will not focus explicitly on the CVD process
technology used to produce ZnS commercially today.

John McCloy
Randal Tustison
March 2013
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