TURING [R R AR 1T BN 2 R T

TF A RE

A& 2152 B
(FTHR)

Russell C. Eberhart .. .
(=] Yuhui Shi i~

—
-~
-

2 o b

PUTATIONAL
NTE“L'L(:'[GENCE W

Zz NRHHL

2= POSTS & TELECOM PRESS

\

BxRR T &iliZF &3l

Computational Intelligence

Concepts to Implementations

e
PR 5151 B
(F3HR)

Russell C. Eberhart ...
[X] Yuhui Shi "

CQMPUTATIONAL

= "INTELLIGENCE

=%

YA VT T
el it

EHBERSE (CIP) iR

THESYRE . MMEA:F 528 = Computational Intelligence:
Concepts to Implementations, First Edition: %3¢/ (3€) &
A" 45 (Eberhart, R. C.), (3£) ®£ERZFH. —bxi: A
B L AR AL, 2009.2

(& R R LR R 51)
ISBN 978-7-115-19403-9

Libe L O @ UL ATARE— feehgs — it
B -3 IV.TPIS83

Hh L R AR P S T CIP A = (2008) 551985095
HERE

A P51 1] A RE ARG B RTINS, RGO THE T IR RERRLIE . SR BRI, P 4 i b S ik
TR AR SRR R BBt i . 15 SR T RO, A s, BEfE TR LA R A — S R
PRI . AASHRME T RS R0, AR IR SR R RIS LR, 2 T TR RE ST
— B RIERAREAE LN, A BRMBE, NEEAKRL, PEEE, BIREDL A%k, RAREHF
ARAFFZHEHE.

AAS TR R i S B BAR O Ll @ AR R PHE SRR AE RV B 2 M, ol NS RER: . A4
. RGERVE . HHRHLERE . R BCE S ST R BOM FIREA 512 7%

P R g LH LR E R 51
WEEEE: MERBEH (FXhR)
¢ = [32] Russell C. Eberhart Yuhui Shi
TAEgEE il
¢ ARSI RRAE AR AT desiiisck s 14 S
hbZm 100061 ek 315@ptpress.com.cn

[kl http://www.ptpress.com.cn
b5 E7 B A7 PR 2 W) A
& A 800x 1000 1/16

Elgk. 30.5
¥, 586 T 20094 2 H45 1 ki
E|l$. 1-2 000) 20094F- 2 HAb 54 1 v ENRI

FERA RIS [ElF: 01-2008-5827%
ISBN 978-7-115-19403-9/TP
s 69.007T
EERS M. (010) 88593802 ENZEFREML. (010) 67129223
R . (010) 67171154

Preface

Several computational analytic tools have matured in the last 10 to 15 years that
facilitate solving problems that were previously difficult or impossible to solve. These
new analytical tools, known collectively as computational intelligence tools, include
artificial neural networks, fuzzy systems, and evolutionary computation. They have
recently been combined among themselves as well as with more traditional approa-
ches, such as statistical analysis, to solve extremely challenging problems. Diagnos-
tic systems, for example, are being developed that include Bayesian, neural network,
and rule-based diagnostic modules, evolutionary algorithm-based explanation facil-
ities, and expert system shells. All of these components work together in a “seamless”
way that is transparent to the user, and they deliver results that significantly exceed
what is available with any single approach.

At a system prototype level, computational intelligence (CI) tools are capable
of yielding results in a relatively short time. For instance, the implementation of a
conventional expert system often takes one to three years and requires the active
participation of a “knowledge engineer” to build the knowledge and rule bases.
In contrast, computational intelligence system solutions can often be prototyped
in a few weeks to a few months and are implemented using available engineering
and computational resources. Indeed, computational intelligence tools are capable
of being applied in many instances by “domain experts” rather than solely by
“computer gurus.”

This means that biomedical engineers, for example, can solve problems in
biomedical engineering without relying on outside computer science expertise such
as that required to build knowledge bases for classical expert systems. Furthermore,
innovative ways to combine CI tools are cropping up every day. For example, tools
have been developed that incorporate knowledge elements with neural networks,
fuzzy logic, and evolutionary computing theory. Such tools are able to solve quickly
classification and clustering problems that would be extremely time consuming
using other techniques.

The concepts, paradigms, algorithms, and implementation of computational
intelligence and its constituent methodologies—evolutionary computation, neural
networks, and fuzzy logic—are the focus of this book. In addition, we emphasize
practical applications throughout, that is, how to apply the concepts, paradigms,
algorithms, and implementations discussed to practical problems in engi-
neering and computer science. This emphasis culminates in the real-world case

") Preface

studies in a final chapter, which are available on this book’s web site at
http:// www.computelligence.org/issue/CICI/CICIL html.

Computational intelligence is closely related to the field called “soft computing.”
There is, in fact, a significant overlap. According to Lotfi Zadeh (1998), the inventor
of fuzzy logic and one of the leading proponents of soft computing:

Soft computing is not a single methodology. Rather, it is a consortium of computing
methodologies which collectively provide a foundation for the conception, design
and deployment of intelligent systems. At this juncture, the principal members of soft
computing are fuzzy logic (FL), neurocomputing (NC), genetic computing (GC),
and probabilistic computing (PC), with the last subsuming evidential reasoning,
belief networks, chaotic systems, and parts of machine learning theory. In contrast to
traditional hard computing, soft computing is tolerant of imprecision, uncertainty
and partial truth. The guiding principle of soft computing is: “exploit the tolerance
for imprecision, uncertainty and partial truth to achieve tractability, robustness, low
solution cost and better rapport with reality.”

Zadeh also believes that soft computing is serving as the foundation for the emerg-
ing field of computational intelligence, and that “In this perspective, the difference
between traditional Al [artificial intelligence] and computational intelligence is that
Al is based on hard computing whereas CI is based on soft computing” (Zadeh
1994). We believe that soft computing is a large subset of computational intelligence.
We heartily agree with him when he says, “Hybrid intelligent systems are definitely
the wave of the future” (Zadeh 1994).

Some of the material in this book is adapted from Computational Intelligence
PC Tools by Eberhart, Dobbins, and Simpson (Academic Press 1996). The extensive
rewrite and reorganization of that material reflect the change in our perception of
computational intelligence that has occurred over the years. That change is reflected
in an increased emphasis on evolutionary computation as providing a foundation
for CI. It also features significant recent developments in particle swarm optimiza-
tion and other evolutionary computation tools.

The primary intended audience for Computational Intelligence: Concepts to
Implementations comprises researchers and graduate students with engineering or
computer science backgrounds and those with a special interest in computational
intelligence and/or system adaptation. One of the authors [RE] has taught a CI intro-
ductory course for several years; the material in this book was developed to support
that course. Other audiences include researchers in fields such as cognitive science
and the physical sciences and those who are motivated to learn about computational
intelligence via self-study. We assume this book’s users understand the basic con-
cepts of classical (two-valued) logic, classical set theory, and elementary probability
theory. We also assume that readers have a familiarity with computers and a very
basic familiarity with calculus. Knowledge of a computer language such as Java, C,
or Visual BASIC is very helpful but not required.

Preface (g?‘ o3

The implementation chapters frequently refer to and list portions of computer
code. In Chapters 4 and 6 we use the most common general-purpose, procedural
programming language, C, to implement the evolutionary algorithms and the arti-
ficial neural networks. Data structures, routines, and finite state machines are used
extensively in the C programming. In Chapters 8 and 9, reflecting programming lan-
guage evolution trends, we use an object-oriented programming language instead of
the procedural programming language C to implement the fuzzy systems and evolu-
tionary fuzzy systems. There are a variety of object-oriented languages, such as C++,
Java, and C#. We use C++ here primarily because it can be looked at as an extension
of the C language.

Organization of the Book

This book is divided into twelve chapters. Chapters 1 and 2 lay the groundwork for
the topic, introducing computational intelligence and its foundations. The next por-
tion of the book includes the “backbone” chapters on the three main constituents of
CI: evolutionary computation, neural networks, and fuzzy logic, in that order. This
order provides an initial focus on evolutionary computation, which is presented as
providing a foundation for development of computational intelligence tools involv-
ing neural networks and fuzzy logic. For instance, when we discuss neural networks,
we see how evolutionary computation can be used to evolve the weights and struc-
ture of feedforward neural networks, and with fuzzy logic, we examine evolutionary
computation applications to tools built using fuzzy logic. In other words, the evo-
lutionary computation theme pervades this book. Within each backbone chapter,
we discuss the histories of computational intelligence, evolutionary computation,
neural networks, and fuzzy logic.

We follow each backbone chapter with a chapter discussing implementation and
examples. Each one contains a section on implementation considerations that
addresses features frequently incorporated into these implementations, which fea-
tures we chose and why we chose them, and the guidelines to using them, as well
as interactions among them. The implementation chapters are intended to provide
readers with the insight to clearly understand “canned,” commercially packaged
software applications and to enable a more thorough understanding of software and
hardware implementation issues for CI paradigms.

Each chapter ends with exercises.

Chapters’ Contents

Chapter 1, Foundations, defines terms used throughout the book and briefly reviews
biological and behavioral motivations for the constituent methodologies of compu-
tational intelligence. This is followed by a brief review of the major application areas

{

N

2

/!

’<\) Preface

for each methodology, as well as of CI. The chapter concludes with a review of major
computational intelligence application areas.

Chapter 2, Computational Intelligence, launches directly into the core subject
of this book. We first review the concepts of adaptation and self-organization, key
to our view of computational intelligence. Then we summarize the brief history of
the CI field, viewing it from the perspectives of other researchers. This leads us into
a discussion of the relationships among the three major components and how they
cooperate and/or are integrated into a computational intelligence system. We present
our definition of computational intelligence, supported by diagrams that place it
into context.

Chapter 3, Evolutionary Computation: Concepts and Paradigms, has been
adapted from the Evolutionary Computation Theory and Paradigms chapter in
Swarm Intelligence (Kennedy, Eberhart, and Shi 2001) with updates and augmen-
tations, including recent developments in particle swarm optimization and other
evolutionary computation approaches. After reviewing the history of evolutionary
computation and giving an overview of the field, we discuss its main paradigms:
genetic algorithms, evolutionary programming, evolution strategies, genetic pro-
gramming, and particle swarm optimization.

Chapter 4, Evolutionary Computation Implementations, discusses factors to con-
sider when implementing evolutionary computation paradigms and presents two
implementation examples: a canonical genetic algorithm and a real-valued particle
swarm that can be run in single-swarm or multiswarm configurations.

Chapter 5, Neural Network Concepts and Paradigms, first briefly presents an
overview of the history of neural networks, then examines what they are and why
they are useful. A discussion of neural network components and terminology fol-
lows, with a review of neural network topologies. A more detailed look at neural
network learning and recall comes next, focusing on three of the most common neu-
ral network paradigms: back-propagation, learning vector quantization, and self-
organizing feature map networks. These networks represent the two basic learning
types: supervised learning (back-propagation) and unsupervised learning (learning
vector quantization and self-organizing feature maps). We also briefly discuss hybrid
networks and recurrent networks. Finally, considerations of preprocessing and post-
processing are evaluated.

Chapter 6, Neural Network Implementations, discusses factors to consider when
implementing artificial neural networks and presents four implementation exam-
ples: back-propagation, learning vector quantization, self-organizing feature maps,
and evolutionary neural networks.

Chapter 7, Fuzzy Systems Concepts and Paradigms, leads off with a brief review
of the history of the field, followed by an examination of fuzzy sets and fuzzy logic,
the concepts of fuzzy sets, and approximate reasoning. We stress the differences
between fuzzy logic and probability, and we present both Mamdani and Takagi-
Sugeno-Kang approaches to the design and analysis of fuzzy systems. The chapter

—~c
Preface { 5 B

concludes with a look at some design considerations and special topics related to
fuzzy systems.

Chapter 8, Fuzzy System Implementations, discusses factors to consider when
implementing fuzzy systems and presents two implementation examples: a tradi-
tional fuzzy rule system and an evolutionary fuzzy rule system. The evolutionary
fuzzy rule system provides a transition into computational intelligence systems.

Chapter 9, Computational Intelligence Implementations, reflects recent devel-
opments in the field, including evolutionary fuzzy systems and approaches to sys-
tem adaptation using computational intelligence. We expand the discussion of the
interaction and cooperation among the three basic components of CI and include a
section on adaptive evolutionary computation using fuzzy systems.

Chapter 10, Performance Metrics, includes a number of system performance
measures not generally used in other disciplines. Included are percent correct, sum-
squared error, absolute error, normalized error, receiver operating characteristic
curves, recall and precision, confusion matrices, and the chi-squared test.

Chapter 11, Analysis and Explanation, presents several tools that are helpful in
assessing and explaining how well a computational intelligence tool is doing its job.
Included are sensitivity analyses, Hinton diagrams for neural networks, and the use
of evolutionary computing tools for analysis. An example of using particle swarm to
develop an explanation facility is included in this chapter.

The book concludes with Chapter 12, Case Study Summaries, which provides
examples of practical applications. This “virtual” chapter is located on the book’s
web site. Having it there makes it a “living” chapter that can be updated periodi-
cally. We will add new case studies from time to time and delete older ones as they
become obsolete. We invite you, the reader, to submit case studies you would like to
have considered for inclusion. (Please see the web site for more information about
this.) Among the initial case studies posted are two based on recent work by us,
the authors, including one on human EEG analysis and another on optimization of
logistics operations. Other case studies discussed in detail are schedule optimization
and control system design. Several other case study examples are briefly reviewed.

A bibliography concludes the book. The glossary is a “virtual” one that is located,
with Chapter 12, on this book’s web site http://www.computelligence.org/issue/CICI/
CICLhtml.

Our Approach: What This Book Is, and Is Not, About

This book asserts that computational intelligence rests on a foundation of evolution-
ary computation. This is certainly not the only way to view computational intelli-
gence, but so far in the authors’ experience, it has proved useful and effective.

Itis about computational tools that you can use in practical applications. Although
the authors have backgrounds in engineering and computer science, CI tools are just
as applicable to problems in other fields such as cognitive science and business.

N
*(_) Preface

This book is about self-organization, which is closely related to emergent
computation. Self-organization involves simple processes that lead to complex
results, and the whole being greater than the sum of its parts. As Stephen Wolfram
(1994) said, “It is possible to make things of great complexity out of things that
are very simple. There is no conservation of simplicity.”

Itis about complex adaptive systems, a term that describes nonlinear systems com-
prising the interaction of numerous adaptive elements, or entities. The concepts of
self-organization and complexity are related, as we discuss later.

This book is not an exhaustive treatise on all permutations and variations of com-
putational intelligence and its constituent methodologies. If you want an exhaustive
discussion of artificial neural network paradigms, for instance, you’ll need to turn to
another book. We present only those paradigms we believe provide the most useful
tools for someone solving practical problems.

It is not a compendium of mathematical derivations and proofs. We present only
those few we believe are essential to gaining a working-level understanding of how
and why the computational tools work.

This book is not about agents. Most of our computational intelligence tools do
not qualify as “agents” because they lack the required autonomy and specialization.
They can, however, be incorporated into intelligent agents and agent systems.

It is not about life. We nip around the edges of artificial life in a few places, but
we don’t address the question “What is alive?” (We do, however, share some pre-
liminary thoughts on that subject.) We also do not address the search for artificial
intelligence (whatever that is) or even for a computational intelligence tool from
which intelligent behavior will emerge. Our focus is on solving problems.

Throughout the text, additional aspects of our approach and philosophy should
become evident, perhaps a little bit at a time. First, when considering computa-
tional intelligence tools and systems, traditional distinctions between hardware and
software get a bit blurred; distinctions between data and program are often almost
nonexistent. Second, our emphasis is on problem solving and applications rather
than physiological, biological, or behavioral plausibility. We do not pay too much
attention to whether the CI tools reflect what actually goes on in the brain or any
other part of a biological organism. Third, we believe that the activities of a com-
putational intelligence application developer and user are often somewhat different
from those in other technical areas.

Developing computational intelligence applications requires the developer to
play two roles. The first is the hands-on active design, develop, test, and debug role
that is fairly common in other technical areas. The second, as important as the first,
is a more passive observation and analytical thinking role. Results from a compu-
tational intelligence tool are often not what was expected. Most of the time, if the
developer takes the time to observe and think, rather than “bash to fit and paint to
match,” something very useful can be learned.

Preface (5l T)

Web Site Details

The authors’ web site for this book is http://www.computelligence.org/issue/CICI/
CICLhtml. (There is a link to this site from the publisher’s web site.) Software imple-
mentations are written for the Windows and/or Java environment, and executable
versions of software described in the implementation chapters are located and main-
tained on the web site. Included as part of each implementation are the ancillary
files—a run file and a data file—needed to run the implementation. In addition, out-
put (results) files, obtained by the authors using the executable and ancillary files,
are provided. You may want to rename these output files, or move them to another
directory, so that you can compare your results with those of the authors.

We’d like to emphasize that the software is not just for demonstration; you can
use it for many real-world applications. The C and C++ source code has been written
using the Borland C++ 4.5 development environment. The Java code will run on any
computer that supports the Java Virtual Machine; this includes machines running
Windows, Unix, and Macintosh operating systems.

Of special note are the recent variations of particle swarm optimization that have
been integrated into the EC theory and paradigms chapter and the EC implementa-
tions chapter. Source code is provided on the web site for some of the implementa-
tions so that you can modify the software for specific applications.

Some of our software can be run using a web browser. Other software, including
source code, is useful only after downloading it from the book’s web site. Approx-
imately 600 slides that cover the material in this book are available to instructors
(or anyone else) at no cost. These slides, configured as Word files, are downloadable
from the web site. The site also contains hyperlinks to other resource information
on the Internet related to subjects in this book.

A significant amount of source code is also on the web site. A total of eight
software modules are available, both as executables and as source code:

Genetic algorithm
Particle swarm optimization (including multiple swarms)
Back-propagation neural network

Learning vector quantization neural network

Self-organizing feature map neural network

Evolutionary back-propagation neural network
Fuzzy rule system
Evolutionary fuzzy rule system
We ask that you send the authors a payment of US $25 per software module of source

code ($150 for all of the source code) if you find it useful. We are relying on your
honesty. (The address is on the web site with the software.)

{ \ N
{ 8 J«*_) Preface

Finally, as described previously, Chapter 12, Case Studies, is available on the
web site.

Acknowledgments

Each of us has numerous people who should be acknowledged; we mention
only a few.

Russ Eberhart: First, I want to acknowledge my wife Francie and son Sean who
put up with a higher than usual absence rate of their spouse and father, respectively.
I also want to acknowledge my son Mark, a three-time cancer survivor, who has
taught me what courage is. Special thanks go to my students in ECE 536, Intro-
duction to Computational Intelligence. They were the guinea pigs. Sometimes, just
from their eyes glazing over, I knew that a section needed to be rewritten (or deleted).
Their patience is appreciated, and their input has been invaluable.

Yuhui Shi: I would like to thank my parents and parents-in-law for taking good
care of my daughter Melissa Xueyin Shi and my son Nicholas Yuge Shi so that
I had plenty of quality time to work on this book. My thanks also go to profes-
sors Zhenya He of Southeast University, M. N. S. Swamy and M. Omair Ahmad of
Concordia University, Xin Yao of the University of Birmingham, Jinhyung Kim of the
Korean Advanced Institute of Science and Technology, and to Russell C. Eberhart,
who are my mentors and have paved the way for me in my career development.

Both of us acknowledge the contributions of our technical reviewers. Their
insights resulted in improvements in both the organization and content of this book.
Finally, we are grateful to the team at Morgan Kaufmann Publishers who worked dili-
gently with us throughout the process of writing, editing, and production. Working
with Denise Penrose, Diane Cerra, Emilia Thiuri, Marilyn Rash, and Mary James has
been a pleasure and a learning experience.

Contents

chapter one
Foundations

Definitions 2
Biological Basis for Neural Networks 4
Neurons 4
Biological versus Artificial Neural Networks 5
Biological Basis for Evolutionary Computation 7
Chromosomes 7
Biological versus Artificial Chromosomes 8
Behavioral Motivations for Fuzzy Logic 9
Myths about Computational Intelligence 10
Computational Intelligence Application Areas 11
Neural Networks 12
Evolutionary Computation 13
Fuzzy Logic 14
Summary 14
Exercises 14

chapter two
Computational Intelligence

Adaptation 18
Adaptation versus Learning 19
Three Types of Adaptation 20
Three Spaces of Adaptation 25
Self-organization and Evolution 26
Evolution beyond Darwin 28
Historical Views of Computational Intelligence 29
Computational Intelligence as Adaptation and Self-organization 30
The Ability to Generalize 34

17

(2) b&/-\) Contents

Computational Intelligence and Soft Computing versus Artificial
Intelligence and Hard Computing 35

Summary 36
Exercises 38

chapter three

Evolutionary Computation Concepts and Paradigms
History of Evolutionary Computation 40

Genetic Algorithms 40
Evolutionary Programming 44
Evolution Strategies 44

Genetic Programming 45
Particle Swarm Optimization 45
Toward Unification 47

Evolutionary Computation Overview 47

EC Paradigm Attributes 48
Implementation 49

Genetic Algorithms 51

Overview of Genetic Algorithms 51

A Sample GA Problem 52

Review of GA Operations in the Simple Example 56
Schemata and the Schema Theorem 64

Comments on Genetic Algorithms 67

Evolutionary Programming 68

Evolutionary Programming Procedure 69

Finite State Machine Evolution for Prediction 69
Function Optimization 74

Comments on Evolutionary Programming 75

Evolution Strategies 75

Selection 78
Key Issues in Evolution Strategies 80

Genetic Programming 81
Particle Swarm Optimization 87

Developments 87
Resources 92

Summary 92
Exercises 93

chapter four

Evolutionary Computation Implementations

Implementation Issues 97

Homogeneous versus Heterogeneous Representation 97

39

95

P
Contents (r +(3
- N 7
Population Adaptation versus Individual Adaptation 98
Static versus Dynamic Adaptation 99
Flowcharts versus Finite State Machines 100
Handling Multiple Similar Cases 100
Allocating and Freeing Memory Space 102
Error Checking 102
Genetic Algorithm Implementation 103
Programming Genetic Algorithms 103
Running the GA Implementation 116
Particle Swarm Optimization Implementation 118
Programming the PSO Implementation 118
Programming the Co-evolutionary PSO 125
Running the PSO Implementation 140
Summary 142
Exercises 142

chapter five
Neural Network Concepts and Paradigms 145

Neural Network History 146
Where Did Neural Networks Get Their Name? 146
The Age of Camelot 147
The Dark Age 153
The Renaissance 159
The Age of Neoconnectionism 164
The Age of Computational Intelligence 165
What Neural Networks Are and Why They Are Useful 165
Neural Network Components and Terminology 168
Terminology 168
Input and Output Patterns 169
Network Weights 170
Processing Elements 171
Processing Element Activation Functions 173
Neural Network Topologies 176
Terminology 176
Two-layer Networks 176
Multilayer Networks 178
Neural Network Adaptation 179
Terminology 180
Hebbian Adaptation 181
Competitive Adaptation 182
Multilayer Error Correction Adaptation 183
Summary of Adaptation Procedures 187

"’\\ Contents

Comparing Neural Networks and Other Information Processing Methods 188
Stochastic Approximation 188
Kalman Filters 188
Linear and Nonlinear Regression 188
Correlation 189
Bayes Classification 189
Vector Quantization 189
Radial Basis Functions 190
Computational Intelligence 190
Preprocessing 190
Selecting Training, Test, and Validation Datasets 191
Preparing Data 192
Postprocessing 195
Denormalization of Output Data 195
Summary 196
Exercises 196

chapter six
Neural Network Implementations

Implementation Issues 198
Topology 199
Back-propagation Network Initialization and Normalization 199
Learning Vector Quantizer Network Initialization and Normalization 202
Feedforward Calculations for the Back-propagation Network 203
Feedforward Calculations for the LVQ-I Net 206
Back-propagation Supervised Adaptation by Error Back-propagation 206
LVQ Unsupervised Adaptation Calculations 210
The LVQ Supervised Adaptation Algorithm 211
Issues in Evolving Neural Networks 212
Advantages and Disadvantages of Previous Evolutionary Approaches 214
Evolving Neural Networks with Particle Swarm Optimization 216
Back-propagation Implementation 218
Programming a Back-propagation Neural Network 218
Running the Back-propagation Implementation 233
The Kohonen Network Implementations 235
Programming the Learning Vector Quantizer 235
Running the LVQ Implementation 249
Programming the Self-organizing Feature Map 250
Running the SOFM Implementation 260
Evolutionary Back-propagation Network Implementation 262
Programming the Evolutionary Back-propagation Network 262

197

Contents

Running the Evolutionary Back-propagation Network 264
Summary 265
Exercises 265

chapter seven
Fuzzy Systems Concepts and Paradigms

History 270
Fuzzy Sets and Fuzzy Logic 275
Logic, Fuzzy and Otherwise 275
Fuzziness Is Not Probability 276
The Theory of Fuzzy Sets 277
Fuzzy Set Membership Functions 279
Linguistic Variables 281
Linguistic Hedges 282
Approximate Reasoning 283
Paradoxes in Fuzzy Logic 283
Equality of Fuzzy Sets 284
Containment 285
NOT: The Complement of a Fuzzy Set 285
AND: The Intersection of Fuzzy Sets 286
OR: The Union of Fuzzy Sets 287
Compensatory Operators 288
Fuzzy Rules 290
Fuzzification 290
Fuzzy Rules Fire in Parallel 293
Defuzzification 294
Other Defuzzification Methods 296
Measures of Fuzziness 297
Developing a Fuzzy Controller 301
Why Fuzzy Control 301
A Fuzzy Controller 302
Building a Mamdani-type Fuzzy Controller 303
Fuzzy Controller Operation 310
Takagi-Sugeno—Kang Method 310
Summary 313
Exercises 314

chapter eight
Fuzzy Systems Implementations

Implementation Issues 316
Fuzzy Rule Representation 316

269

315

Contents

Evolutionary Design of a Fuzzy Rule System 317
An Object-oriented Language: C++ 320
Fuzzy Rule System Implementation 320
Programming Fuzzy Rule Systems 320
Running the Fuzzy Rule System 345
Iris Dataset Application 351
Evolving Fuzzy Rule Systems 353
Programming the Evolutionary Fuzzy Rule System 353
Running the Evolutionary Fuzzy Rule System 366
Summary 371
Exercises 371

chapter nine
Computational Intelligence Implementations 373

chapter ten

Implementation Issues 374
Adaptation of Genetic Algorithms 375
Fuzzy Adaptation 375
Knowledge Elicitation 377
Fuzzy Evolutionary Fuzzy Rule System Implementation 378
Programming the Fuzzy Evolutionary Fuzzy Rule System 378
Running the Fuzzy Evolutionary Fuzzy Rule System 381
Choosing the Best Tools 382
Strengths and Weaknesses 382
Modeling and Optimization 383
Practical Issues 384
Applying Computational Intelligence to Data Mining 385
An Example Data Mining System 386
Summary 387
Exercises 388

Performance Metrics 389

General Issues 390
Selecting Gold Standards 390
Partitioning the Patterns for Training, Testing, and Validation 391
Cross Validation 392
Fitness and Fitness Functions 393
Parametric and Nonparametric Statistics 394
Percent Correct 395
Average Sum-squared Error 396

