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Foreword

Since the discovery, by L. S. Pontryagin, of the necessary optimality con-
ditions for the control of dynamic systems in the 1950s, mathematical
control theory has found numerous applications in engineering and in
the social sciences. T. A. Weber has dedicated his book to optimal con-
trol theory and its applications in economics. Readers can find here a
succinct introduction to the basic control-theoretic methods, and also
clear and meaningful examples illustrating the theory.

Remarkable features of this text are rigor, scope, and brevity, com-
bined with a well-structured hierarchical approach. The author starts
with a general view on dynamical systems from the perspective of the
theory of ordinary differential equations; on this basis, he proceeds to
the classical optimal control theory, and he concludes the book with
more recent views of game theory and mechanism design, in which
optimal control plays an instrumental role.

The treatment is largely self-contained and compact; it amounts to
a lucid overview, featuring much of the author’s own research. The
character of the problems discussed in the book promises to make the
theory accessible to a wide audience. The exercises placed at the chapter
endings are largely original.

I am confident that readers will appreciate the author’s style and
students will find this book a helpful guide on their path of discovery.

A. V. Kryazhimskiy
Steklov Institute of Mathematics, Russian Academy of Sciences
International Institute for Applied Systems Analysis
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1 Introduction

Our nature consists in movement;
absolute rest is death.

—Blaise Pascal

Change is all around us. Dynamic strategies seek to both anticipate and
effect such change in a given system so as to accomplish objectives of
an individual, a group of agents, or a social planner. This book offers
an introduction to continuous-time systems and methods for solving
dynamic optimization problems at three different levels: single-person
decision making, games, and mechanism design. The theory is illus-
trated with examples from economics. Figure 1.1 provides an overview
of the book'’s hierarchical approach.

The first and lowest level, single-person decision making, concerns
the choices made by an individual decision maker who takes the evo-
lution of a system into account when trying to maximize an objective
functional over feasible dynamic policies. An example would be an eco-
nomic agent who is concerned with choosing a rate of spending for
a given amount of capital, each unit of which can either accumulate
interest over time or be used to buy consumption goods such as food,
clothing, and luxury items.

The second level, games, addresses the question of finding predictions
for the behavior and properties of dynamic systems that are influenced
by a group of decision makers. In this context the decision makers
(players) take each other’s policies into account when choosing their
own actions. The possible outcomes of the game among different play-
ers, say, in terms of the players” equilibrium payoffs and equilibrium
actions, depend on which precise concept of equilibrium is applied.
Nash (1950) proposed an equilibrium such that players’ policies do not
give any player an incentive to deviate from his own chosen policy, given
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Figure 1.1
Topics covered in this book.

the other players’ choices are fixed to the equilibrium policies. A clas-
sic example is an economy with a group of firms choosing production
outputs so as to maximize their respective profits.

The third and highest level of analysis considered here is mechanism
design, which is concerned with a designer’s creation of an environment
in which players (including the designer) can interact so as to maximize
the designer’s objective functional. Leading examples are the design of
nonlinear pricing schemes in the presence of asymmetric information,
and the design of markets. Arguably, this level of analysis is isomorphic
to the first level, since the players’ strategic interaction may be folded
into the designer’s optimization problem.

The dynamics of the system in which the optimization takes place are
described in continuous time, using ordinary differential equations. The
theory of ordinary differential equations can therefore be considered the
backbone of the theory developed in this book.
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1.1 Outline

Ordinary Differential Equations (ODEs) Chapter 2 reviews basic
concepts in the theory of ODEs. One-dimensional linear first-order
ODEs can be solved explicitly using the Cauchy formula. The key insight
from the construction of this formula (via variation of an integration
constant) is that the solution to a linear initial value problem of the
form

F+ghx =hH),  x(to) =x0,

for a given tuple of initial data (o, xo) can be represented as the super-
position of a homogeneous solution (obtained when h =0) and a
particular solution to the original ODE (but without concern for the
initial condition). Systems of linear first-order ODEs,

X = A)x+b(), (1.1)

with an independent variable of the form x = (xy, ..., x,) and an initial
condition x(fg) = xg can be solved if a fundamental matrix ®(¢, ty) as the
solution of a homogeneous equation is available. Higher-order ODEs
(containing higher-order derivatives) can generally be reduced to first-
order ODEs. This allows limiting the discussion to (nonlinear) first-order
ODEs of the form

& =f(tx), (1.2)

fort > to. Equilibrium points, thatis, points x at which a system does not
move because f(f, X) = 0, are of central importance in understanding a
continuous-time dynamic model. The stability of such points is usually
investigated using the method developed by Lyapunov, which is based
on the principle that if system trajectories x(t) in the neighborhood of an
equilibrium point are such that a certain real-valued function V'(¢, x(t))
is nonincreasing (along the trajectories) and bounded from below by its
value at the equilibrium point, then the system is stable. If this function
is actually decreasing along system trajectories, then these trajectories
must converge to an equilibrium point. The intuition for this finding is
that the Lyapunov function V' can be viewed as energy of the system
that cannot increase over time. This notion of energy, or, in the con-
text of economic problems, of value or welfare, recurs throughout the

book.
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Optimal Control Theory Given a description of a system in the form
of ODEs, and an objective functional J(u) as a function of a dynamic
policy or control u, together with a set of constraints (such as initial
conditions or control constraints), a decision maker may want to solve
an optimal control problem of the form

T
J(u) = / Bt X0, ) dt —> max, (1.3)

subject to x(f) = f(t, x(t), u(t)), x(to) = xo, and u € U, for all t € [tp, T].
Chapter 3 introduces the notion of a controllable system, which is a sys-
tem that can be moved using available controls from one state to another.
Then it takes up the construction of solutions (in the form of state-control
trajectories (x*(t), u*(t)), t € [to, T]) to such optimal control problems:
necessary and sufficient optimality conditions are discussed, notably
the Pontryagin maximum principle (PMP) and the Hamilton-Jacobi-
Bellman (HJB) equation. Certain technical difficulties notwithstanding,
itis possible to view the PMP and the HJB equation as two complemen-
tary approaches to obtain an understanding of the solution of optimal
control problems. In fact, the HJB equation relies on the existence of a
continuously differentiable value function V(t, x), which describes the
decision maker’s optimal payoff, with the optimal control problem ini-
tialized at time f and the system in the state x. This function, somewhat
similar to a Lyapunov function in the theory of ODEs, can be inter-
preted in terms of the value of the system for a decision maker. The
necessary conditions in the PMP can be informally derived from the
HJB equation, essentially by restricting attention to a neighborhood of
the optimal trajectory.

Game Theory When more than one individual can make payoff-
relevant decisions, game theory is used to determine predictions about
the outcome of the strategic interactions. To abstract from the complex-
ities of optimal control theory, chapter 4 introduces the fundamental
concepts of game theory for simple discrete-time models, along the
lines of the classical exposition of game theory in economics. Once all
the elements, including the notion of a Nash equilibrium and its var-
ious refinements, for instance, via subgame perfection, are in place,
attention turns to differential games. A critical question that arises in
dynamic games is whether the players can trust each other’s equilib-
rium strategies, in the sense that they are credible even after the game
has started. A player may, after a while, find it best to deviate from a
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Nash equilibrium that relies on a “noncredible threat.” The latter con-
sists of an action which, as a contingency, discourages other players
from deviating butis not actually beneficial should they decide to ignore
the threat. More generally, in a Nash equilibrium that is not subgame-
perfect, players lack the ability to commit to certain threatening actions
(thus, noncredible threats), leading to “time inconsistencies.”

Mechanism Design A simple economic mechanism, discussed in
chapter 5, is a collection of a message space and an allocation function.
Thelatter is a mapping from possible messages (elements of the message
space) to available allocations. For example, a mechanism could consist
of the (generally nonlinear) pricing schedule for bandwidth delivered by
anetwork service provider. A mechanism designer, who is often referred
to as the principal, initially announces the mechanism, after which the
agent sends a message to the principal, who determines the outcome
for both participants by evaluating the allocation function. More gen-
eral mechanisms, such as an auction, can include several agents playing
a game that is implied by the mechanism.

Optimal control theory becomes useful in the design of a static mech-
anism because of an information asymmetry between the principal and
the various agents participating in the mechanism. Assuming for sim-
plicity that there is only a single agent, and that this agent possesses
private information that is encapsulated in a one-dimensional type vari-
able 6 in a type space ® = [6,0], it is possible to write the principal’s
mechanism design problem as an optimal control problem.

1.2 Prerequisites

The material in this book is reasonably self-contained. It is recom-
mended that the reader have acquired some basic knowledge of
dynamic systems, for example, in a course on linear systems. In addi-
tion, the reader should possess a firm foundation in calculus, since the
language of calculus is used throughout the book without necessarily
specifying all the details or the arguments if they can be considered
standard material in an introductory course on calculus (or analysis).

1.3 A Brief History of Optimal Control
Origins The human quest for finding extrema dates back to antiquity.

Around 300 B.C., Euclid of Alexandria found that the minimal distance
between two points A and B in a plane is described by the straight
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line AB, showing in his Elements (Bk I, Prop. 20) that any two sides of
a triangle together are greater than the third side (see, e.g., Byrne 1847,
20). This is notwithstanding the fact that nobody has actually ever seen a
straight line. As Plato wrote in his Allegory of the Cave! (Republic, Bk V1I,
ca. 360 B.C.), perceived reality is limited by our senses (Jowett 1881).
Plato’s theory of forms held that ideas (or forms) can be experienced
only as shadows, that is, imperfect images (W. D. Ross 1951). While
Euclid’s insight into the optimality of a straight line may be regarded
merely as a variational inequality, he also addressed the problem of
finding extrema subject to constraints by showing in his Elements (Bk VI,
Prop. 27) that “of all the rectangles contained by the segments of a given
straight line, the greatest is the square which is described on half the
line” (Byrne 1847, 254). This is generally considered the earliest solved
maximization problem in mathematics (Cantor 1907, 266) because

a
7 € arg rjrcleamx{x(u —x)},

for any a > 0. Another early maximization problem, closely related to
the development of optimal control, is recounted by Virgil in his Aeneid
(ca. 20 B.C.). It involves queen Dido, the founder of Carthage (located in
modern-day Tunisia), who negotiated to buy as much land as she could
enclose using a bull’s hide. To solve her isoperimetric problem, that is, to
find the largest area with a given perimeter, she cut the hide into a long
strip and laid it out in a circle. Zenodorus, a Greek mathematician, stud-
ied Dido’s problem in his book On Isoperimetric Figures and showed thata
circleis greater than any regular polygon of equal contour (Thomas 1941,
2:387-395). Steiner (1842) provided five different proofs that any figure
of maximal area with a given perimeter in the plane must be a circle. He
omitted to show that there actually exists a solution to the isoperimetric
problem. Such a proof was given later by Weierstrass (1879/1927).2

Remark 1.1 (Existence of Solutions) Demonstrating the existence of a
solution to a variational problem is in many cases both important and
nontrivial. Perron (1913) commented specifically on the gap left by
Steiner in the solution of the isoperimetric problem regarding existence,

1. In the Allegory of the Cave, prisoners in a cave are restricted to a view of the real world
(which exists behind them) solely via shadows on a wall in front of them.

2. Weierstrass’s numerous contributions to the calculus of variations, notably on the exis-
tence of solutions and on sufficient optimality conditions, are summarized in his extensive
lectures on Variationsrechnung, published posthumously based on students’ notes.
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and he provided several examples of variational problems without
solutions (e.g., finding a polygon of given perimeter and maximal sur-
face). Astriking problem without a solution was posed by Kakeya (1917).
He asked for the set of minimal measure that contains a unit line segment
inall directions. One can think of such a Kakeya set (or Besicovitch set) as
the minimal space that an infinitely slim car would need to turn around
in a parking spot. Somewhat surprisingly, Besicovitch (1928) was able
to prove that the measure of the Kakeya set cannot be bounded from
below by a positive constant. O

The isoperimetric constraint appears naturally in economics as a
budget constraint, which was recognized by Frisi in his written-in com-
mentary on Verri’s (1771) notion that a political economy shall be trying
to maximize production subject to the available labor supply (Robert-
son 1949). Such budget-constrained problems are natural in economics.3
For example, Sethi (1977) determined a firm’s optimal intertemporal
advertising policy based on a well-known model by Nerlove and
Arrow (1962), subject to a constraint on overall expenditure over a finite
time horizon.

Calculus of Variations The infinitesimal calculus (or later just calculus)
was developed independently by Newton and Leibniz in the 1670s.
Newton formulated the modern notion of a derivative (which he termed
fluxion) in his De Quadratura Curvarum, published as an appendix to
his treatise on Opticks in 1704 (Cajori 1919, 17-36). In 1684, Leibniz
published his notions of derivative and integral in the Acta Eruditorum,
a journal that he had co-founded several years earlier and that enjoyed
a significant circulation in continental Europe. With the tools of calculus
in place, the time was ripe for the calculus of variations, the birth of
which can be traced to the June 1696 issue of the Acta Eruditorum. There,
Johann Bernoulli challenged his contemporaries to determine the path
from point A to point B in a vertical plane that minimizes the time
for a mass point M to travel under the influence of gravity between A
and B. This problem of finding a brachistochrone (figure 1.2) was posed

3. To be specific, let C(t, x, u) be a nonnegative-valued cost function and B > 0 a given
budget. Then along a trajectory (x(t), u(t)), t € [to, T], a typical isoperimetric constraint is
of the form ff C(t, x(t),u(t))dt < B. It can be rewritten as y(t) = C(t, x(t), u(t)), y(to) =
0, y(T) <B. The latter formulation falls squarely within the general optimal-control
formalism developed in this book, so isoperimetric constraints do not need special
consideration.
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Figure 1.2

Brachistochrone connecting the points A and B in parametric form: (x(¢), y(¢)) = (e(¢ —
sin (¢)), @( cos (p) — 1)), where ¢ = p(t) = ,/g/a t, and g ~ 9.81 meters per second squared
is the gravitational constant. The parameter « and the optimal time = T* are determined
by the endpoint condition (x(¢(T*)), y(¢(T*))) = B.

earlier (but not solved) by Galilei (1638).* In addition to his own solution,
Johann Bernoulli obtained four others, by his brother Jakob Bernoulli,
Leibniz, de I'Ho6pital, and Newton (an anonymous entry). The last was
recognized immediately by Johann ex ungue leonem (“one knows the lion
by his claw”).

Euler (1744) investigated the more general problem of finding extrema
of the functional

T
i f Lt x(t), %) dt, (1.4)
0

subject to suitable boundary conditions on the function x( - ). He derived
what is now called the Euler equation (see equation (1.5)) as a necessary
optimality condition used to this day to construct solutions to variational
problems. In his 1744 treatise on variational methods, Euler did not
create a name for his complex of methods and referred to variational
calculus simply as the isoperimetric method. This changed with a 1755
letter from Lagrange to Euler informing the latter of his §-calculus, with
8 denoting variations (Goldstine 1980, 110-114). The name “calculus of
variations” was officially born in 1756, when the minutes of meeting

4. Huygens (1673) discovered that a body which is bound to fall following a cycloid curve
oscillates with a periodicity that is independent of the starting point on the curve, so he
termed this curve tautochrone. The brachistochrone is also a cycloid and thus identical to
the tautochrone, which led Johann Bernoulli to remark that “nature always acts in the
simplest possible way” (Willems 1996).
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no. 441 of the Berlin Academy on September 16 note that Euler read
“Elementa calculi variationum” (Hildebrandt 1989).

Remark 1.2 (Extremal Principles) Heron of Alexandria explained the
equality of angles in the reflection of light by the principle that nature
must take the shortest path, for “[i]f Nature did not wish to lead our
sight in vain, she would incline it so as to make equal angles” (Thomas
1941, 2:497). Olympiodorus the younger, in a commentary (ca. 565) on
Aristotle’s Meteora, wrote, “[TThis would be agreed by all . . . Nature does
nothing in vain nor labours in vain” (Thomas 1941, 2:497).

In the same spirit, Fermat in 1662 used the principle of least time (now
known as Fermat'’s principle) to derive the law of refraction for light
(Goldstine 1980, 1-6). More generally, Maupertuis (1744) formulated the
principle of least action, that in natural phenomena a quantity called action
(denoting energy x time) is to be minimized (cf. also Euler 1744). The
calculus of variations helped formulate more such extremal principles,
for instance, d’Alembert’s principle, which states that along any virtual
displacement the sum of the differences between the forces and the time
derivatives of the moments vanishes. It was this principle that Lagrange
(1788/1811) chose over Maupertuis’s principle in his Mécanique Ana-
lytique to firmly establish the use of differential equations to describe
the evolution of dynamic systems. Hamilton (1834) subsequently estab-
lished that the law of motion on a time interval [ty, T] can be derived
as extremal of the functional in equation (1.4) (principle of stationary
action), where L is the difference between kinetic energy and poten-
tial energy. Euler’s equation in this variational problem is also known
as the Euler-Lagrange equation,

4 BL(E (0, (1) _ AL, x(8), %(1) _
dt ax dx n
for all t € [ty, T]. With the Hamiltonian function H(t, x, x, ) = (¥, x) —

L(t, x, x), where ¢ = 9L/dx is an adjoint variable, one can show that (1.5)
is in fact equivalent to the Hamiltonian system,

0, (1.5)

5. To see this, note first that (1.6) holds by definition and that irrespective of the initial
conditions,

O—d—H—d—H—ﬁ+ﬂi+ﬁtjf—(¢'+ o OL f8L , oL
R T T2 e e T v’ A WA =\ ® ax'*)
whence, using ¢ = dL/dx and X = dH /31, we obtain

o OH OL [OH oL .\ JoH .\ .. [OH oL

T T ™ " ap ¥ [T g
Thus, dH/dx = —9L/dx, so the Euler-Lagrange equation (1.5) immediately yields (1.7).



