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Preface

This is a self-contaired introducuon te diffuiential zeomerry and the cal-
cuivs of differentind formis, $is written primarily for physicists, The mate-
vial complentents the weca! mathematical methods, which: emphacize
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derd pevsies heckgroundg wowmechanics. elcciend namos., and mathemag
ezl micthods, The mamematicaily Knowledgeabie can skin directly o the

hicart of the book, the calculus of differential torms, 11 Chapter iV.

Tiiis book ialls beiween the usual mathenmztics and physics texts. On
the one hand, proofs are giver only when they are gspecially instructive.
On the other hand, definitions, especialiy of mathematical structures, are
given iar more carefully than is the usual practice in physics. It is very
dangerous to be sloppy in your definitions. I have taken considerable
care to give many physical applications and io respect the ph,\%ical subtie-
ties of these applications. Indeed, my operational rule was to inctude no
mathematics for which I could not produce a useful example. These
examples form nearly half the book, and a large part of your learning
will take place while reading and thinking about them. I feel that we
learn far more from carefully chosen exampies than from formal and un-
natural deductive reasoning. Most of these examples were originally prob-
lems. I wish that I had been left with still more problems for the reader.

I call this a geometric treatment. What dc I mean by geometry? One
connotation is that of diagrams and pictorial representations. Indeed, |
called an early set of notes “The Descriptive Geometry of Tensors.” You
will find many diagrams here, and | have gone to some ¢ffort to make
tbem honest diagrams: Often they can be substituted for the verbal hints
that sometimes constitute a proof.

Xi
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An illustration of the comparison of two areas. No metric is needed, only the construction
of parallel lines and the comparison of lengths along a line.

By geometry, however, I mean more than dictures. After all, pictorial
meihods grow clumsy in spaces of dimension greater than four or five.
To be gecmetric connotes for me an emphasis on the siructures them-
selves, rather than on the formal manipulation of representations, espe-
cially algebraic ones.

Examples: To appreciate the distinction between the simplicity of a
geoimetric concept and the complexity of its numerical 1epresenta-
tion, consider an e¢llipse in general position. A simple idea, but rep-
resented by an appalling mess of aumbers.

A determinant can be defined in terms of explicit rules of computa-
tion. But geometrically we can better define the determinant as the
factor by which a linear transformation changes volumes. Now, to
compare the volumes of two parallelopipeds does not require a
metric structure. A linear structure is sufficient. For example, a
comparison of the areas of two parallelograms is shown in the ac-
companying diagram. in this geometric view, the determinant of the
composition of the two linear transformations (matrix product) is
obviously the product of the determinants. To prove this from the
algebraic view requires an involved calculation given in Section 27.

The emphasis on the structures themselves rather than on their represen-
tations leads us naturally to use the coordinate-free language of modern
mathematics.
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This modern language makes the foundations of physical models clear
and precise. Surprisingly, it also makes the computations clearer. Fur-
ther, the coordinate-free language turns out to be very easy to illustrate.
As this material developed, there was a useful symbiosis between formal-
ism and concrete calculation. The solutions to concrete problems often
led to improvements in the formalism. For example, I taught a Jackson-
level electrodynamics class using differential forms, and this led to an im-
proved definition of the Hodge star operator. It also forced me to learn
and use twisted tensors. Thermodynamics taught me the importance of
contact manifolds and affine structures. Books that remain on the formal
level treat these important geometric objects briefly if at all.

This emphasis on concrete applications and proper geometric struc-
tures helps us avoid the formal symbol manipulations that so often lead
to nonsense or fallacious proofs of correct results. [Look at Figure 3.1 in
Soper (1976) or the horrible calculus of variations manipulations and
mistakes in Goldstein (1959).] Here we will be able to turn most of the
infinitesimals commonly seen in physics into the appropriate geometric
objects, usually into either rates (tangent vectors) or gradients (differen-
tial forms). The distinction between these is lost in the metric-blinded
symbol pushing of tensor calculus. Nor will the funny delias of the calcu-
lus of variations with their ad hoc rules of manipulation be found here.

The material of this book grew out of the first quarter of a fairly ordi-
nary general-relativity course. After teaching the course several times, |
realized that general relativity as it is usually taught was bad for the stu-
dent. The introduction of a metric right at the start obscures the geo-
metric structures and would force us into abstract number shuffling. As 1
put the metric later and later into the course, I discovered examples from
an ever-wider range of applications: classical mechanics, dispersive waves,
thermodynamics, and so on. After a while [ grew embarrassed at pretend-
ing that it was still a general-relativity course and, presto, a course on
applied differential geometry appeared.

Although most of this material is fairly standard, and by intent the no-
tation is conventional, two departures from common practice shouid be
mentioned. One is the use of twisted tensors. The importance of rwisted
tensors in physics hes been neglected by nearly everyone. There is not
even agreement on the name for these objects. Some of these twisted
tensors are related to the axial vectors of physics. The secord novelty is
the use of contact manifolds. These, rather than symplectic manifolds,
are the proper setting for most physical theories. Symplectic geomerry is



Xiv Preface

important for special situations, primarily time-independent Hamilton-
ian mechanics. ,

You might ask, why not learn these fancy methods after the usual ten-
sor calculus? Ordinarily I would agree with a progressive, top-down ap-
proach. For the material here it doesn’t work. The key idea is that here
we are removing structure from our geometric objects, not adding it. To
think of a space without a metric or a linear structure is much harder
than tc think about adding structure to a space, for example, adding a
multiplication rule to turn a vector space into a Lie algebra. To work
hard to erase what you have just worked hard to learn is frustrating and
inefficient. Thus I recommend here the bottom-up approach. You should
not view this as the overthrow of all that you have learned, however.
Rather, view it as a natural development of vector calculus.

It is impossible for me to recall all the sources for this material. Particu-
larly helpful were Frank Estabrook, Jim Swift, Richard Cushman, Ralph
Baierlein, Kim Griest, Hume Feldman, and David Fried, but hold them
blameless for my mistakes and idiosyncrasies.

W.L.B.



Glossary of-notation

Entries are generally arranged in order of first occurrence in the text.

D? /()

relates source and target sets of a map, asin f:A— B

relates a typical source element and its corresponding target

element, as in g:x—x>

logical implication

Cartesian precuct of two sets; rarely, the 3-space vector
cross product

composition of maps

encloses a list of the elements of a set

partial differentiation, as in f ,

equivalence relation

the equivalence class containing the element b
homogeneous coordinates

relates an element 1o its set, as in x€ R

set inclusion, as in ACB

a vector space, and its dual

pasis vectors

dual basis vectors

differentiavion of a function with respect to its argument
the differential of the function f at the point

action of a linear operator (replaces the generdlly used
parentheses); also a missing argument of a function
norm on a vector space

absolute value

transpose of the matrix A

second differential of fat .

XV



SR

>

;o

T,(M)
THM)

Y
3/dx
dx
X(s)

fu,v]

Yu

w’

[ o

w

£ -85

7 b)
M
TM

Tf
M
C*M

Glossary of notation

the set of real numbers, also R?, and so on

tensor product

the type of tensor, that has p upper indices and g lower
indices; a tangent vector is of type (('))

aiternating product, sometimes called exterior product
metric inner product

a metric tensor

a Euclidean metric tensor

the redshift; (14 z) is the ratio of new wavelength to old
the i/th chart map

the set of infinitely differentiable functions

the surface of the sphere in (n+1)-dimensional Euclidean
space; S'is the circle

the set of tangent vectors at the point p of a manifold M
the set of 1-forms at the point p of a manifold M, dual to

T, (M)

the name for an object that is like the rate of change of v
a basis iangent vecter, tangent to the x axis

a basis 1-form, the gradient of the x coordinate function
when the independent variable x is represented by a
function, it is usually written X

the Lie bracket of vector fields # and v; rarely, the
commutator of two operators

the pushforward map derived from

the pullback map derived from

the integration of the differential form o along the curve v
a projection map

a fiber bundle with projection map w, total space E, and
vase space B

the set of elements mapped onto b by the map «

the cotangent bundle of M

the tangent bundle of M, dual to T*M

the tangent map derived from f

the line-element contact bundle of M

the hypersurface-element contact bundle of M, not dual
to CM

the bundle of a-contact elements of M

the na ne for a variable which is like a partial derivative
of F

left translation by the Lie-group element b

the Lie derivative of by the vector field w
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Glossary of notation XVii

a 3-vector, rarely used

the 3-vector differential operator del

an ideal of differential forms

the set of r-forms

the contraction operator, as in v w

the permutation symbol; can aiso be written with lower
indices

exterior derivative

volume element

basis (n—1)-forms derived from the volume element 6
Hodge star operator

the special Hodge star in spacetime, used when the 3-space
star is also present

the sharp operator mapping !-forms to tangent vectors
using a metric

used around a set of indices to indicate an ordered
summation

Kronecker delta - may have any number of indices on top,
with the same number on the bottom '

an uppercase index denotes a block index: a string of
ordinary indices of unspecified length

the representation of a twisted tensor using the ordinary
tensor @ and an orientation

a differential form representing the orientation of the object 8
the boundary of the set M

the differential operator adjoint to

the de Rham operator, dé+d6d

the divergence operator, as in div o

when @ is a differential form, this indicates the n-told
exterior product

connection components

the covariant derivative of the vector field 2 in the A
direction

torsion tensor

curvature tensor

covariant derivative, for example, the «,,, are the
components of the covariant derivaiive of the {-form w, dx*
equality that holds only in special coordinates

a frame of orthonormal (or pseudoorthonormal) I-forms
connection 1-forms

curvature 2-forms
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Introduction

No one would try to teach electrodynamics without using vector calculus.
It would be crazy to give up so powerful a tool, and it is hard for us to
appreciate the resistance to vector calculus shown at the turn of the cen-
tury. The mathematics of this book can be thought of as the proper gen-
eralization of vector calculus, div, grad, curl, and all that, to spaces of
higher dimension. The generalization is not obvious. Ordinary vector
calculus is misleading because the vector cross product has special prop-
erties in three dimensions. This happens because, for n=3, n and
-é-n(n—l) are equal. It is also important to divorce the formalism from its
reliance on a Euclidean metric, or any metric for that matter. Other
structures are important, and we must make room for them. Also, a
metric allows some accidental identifications that obscure the natural
properties of the geometric structures. Similarly, the linear and affine
structure of Cartesian spaces should be included only if it 1s appropriate.
The mathematics satisfying these conditions is not classicai tensor cal-
culus, but what is called calculus on manifolds and, in particular, the
calculus of differential forms.

What physical problems does this calculus address? The basic idea of
any calculus is to represent the local behavior of physical objects. Sup-
pose you have a smooth distribution of, say, electric charge. The local
behavior is called charge density. A graphical representation of this
density is to draw a box, a parallelopiped, that encloses a unit amount of
charge (on the average) in the limit where the boxes become smaller than
the variations in the density. These boxes have volumes but no particular
shapes. What they have is the idea of relative volume: Given two such
boxes, we can find the ratio of their volumes. (See the example in the
Preface.) Charges come positive and negative, and associated with each
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Figure 1. A geometric representation of the current density at a point. The box lies along
the current lines and encloses one unit of current in the limit where the box shrinks to
nothing. The arrow points in the direction of current flow.

box is a sign. These geometric objects form a one-dimensional vector
space at each point.

A more complicated situation would bé to have a sinooth distribution
of electric current. To represent this, draw another box, this one of indef-
inite length in one dimension. The box should be aligned so that no cur-
rent flows through the sides, and the cross section is such that it encloses
a unit amount of current in the same limit as before. In addition to ihe
shape and alignment, the box now needs an arrow pointing in the direc-
tion of current flow (Figure 1). In Chapter 1V such geometric objects will
be discussed; they are called twisted 2-forms.

Example: A larger current is represented by a box of smaller cross
section. The cumulative particle fiux in an accelerator is such a
current density, and, reasonably enocugh, it is commonly measured
these days in inverse nanobarns.

Such current densities form a three-dimensional vector space. The rules
for equivalence, scaling, and addition are easy to discover, and are illus-
trated in Figures 2, 3, and 4. These geometric objects also describe eleciric
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shear

Figure 2. The equivalence of different representations of current density. Each box

encloses the same current in the limit.
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Figure 3. The scaling ol current densities. Each encloses the same current.

flux. The field lines appear on positive charges and disappear on negative
charges. .

Another, related geometric object has a representation given by two
parallel planes. Now two of the three dimensions are of indefinite ex-
tent. With a convention marking one of these planes as the higher, this
geometric object can represent a potential gradient. In these last two
geometric objects, we see two different aspects of the electric field: first as
the quantity of flux, second as the intensity of the field. This pairing of
variables is reminiscent of thermodynamics.

All the geometric objects described so far are types of differential
forms: Charge density is of the type called a 3-form, current density is a
type of 2-form, and the potential gradient is a 1-form. Each, as you can
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rrent densities, shown here in svmmetric ferm. Tnree cos
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sec. is a natural geometric object in its own right. Althoug!l: thiere i sume
computarional convenience to defning, say, 2-forms as cbjects made up
trom two I-forms, this obscures the real meaning of a 2-form. Whenever
nossible I will iry to penetrate the accidental properties inherent in merely
convenient representations and constructions, and display the reai prop-
eriies of our geometric objects. For this, pictorial representations and
concrete exaiaples will be invaiuvable.

These geometric objects represent the local behavior of things. Their
representarions will be in terms of coordinates, but these coordinates will
not usually have any intrinsic meaning. Thus their representations must
endure under arbitrary smooth changes of the coordinates. Locally these
coordinate changes are linear transformations. Note how the construc-
tions given use only objects, such as lines, planes, and volume ratios, that
are invariant under linear transformations.

Physical laws relaté the behavior of these geometric objects at different
points. in electrodynamics, flux lines and current are conserved except
where charge density is present or changing. In electrostatics, the electric
field can be derived from a potential and has no curl. We will find a
natural differential operator, the exterior derivative, with which to ex-
press these laws.



