O'REILLY

The Definitive Guide

Java tEREAN B (#ENiR)

¥ &8k '? HKRit Scott Oaks &




Javalt BERUERFE RS wam

Java Performance: The Definitive Guide

Sc cott Oaks &
).’:.”, o - ",' ; ' '}
B
-4 . W
i, 10 H

Beijing - Cambridge - Farnham - Koln - Sebastopol - Tokyo H@NZI={[WA{

O’Reilly Media, Inc. AL A& # X & i JiAL R

MR FRAFHRM



BB 2 M % H (CIP) %18

L WIS Bl 4 7 - 2 30/(38) B T T (Oakks, S.)

F A —E R AEAFE AL, 20152
44 5 3 : Java Performance: The Definitive Guide
ISBN 978—-7-5641—5383-0

.01 0.0 ®8- [I.OJIAVAIEE—BF
#wit—%x N. OTP312

[ R AR ] 34 CIP BUHEA% F (2014) 56 294386 5

LHE BBUR EER A RIEIC
E.10- 2014- 147 5

© 2014 bv O'Reillv Media, Inc.
Reprint of the Enelish Edition, iointlv published bv O'Reilly Media, Inc. and Southeast UniversitV Press,

2015. Authorized reorint of the original English edition, 2014 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of renroduction in whole or in part in anV form.
% X % #g & O'Reillv Media, Inc. £ 38 2014,

RXHUPREAEH K F IR IR 2015, RY PO AR R kR EE R ITHE
—— O'Reillv Media, Inc.#13% 7T .

BARFEH A HEH T A B TR S o B FRAETH X EH;

Java MR EEBUBIE B GEENRRD

AR A AT : FRERE AR

#ho fb: BT 25 BR4E:21009
O A FLEF

] ik: htto//www.seupress.com

1 FHB{4:: press@seupress.com

Ep Fill s % N T B SR = EQRIA BR/A |
: T8T K X9BOZEXK 16 A
: 26.75

: 524 T F

s 20154 2 HE 10

: 20154F 2 A% 1 KENRI

: ISBN 978 - 7— 5641 — 5383 -0

: 72.00 7

Wod B R 4B H
S d ¥ 5 R P

At B A R AR R, S AR R . g (R R 025- 83791830



Preface

When O’Reilly first approached me about writing a book on Java performance tuning,
I was unsure. Java performance, I thought—aren’t we done with that? Yes, I still work
on performance of Java (and other) applications on a daily basis, but I like to think that
I spend most of my time dealing with algorithmic inefficiences and external system
bottlenecks rather than on anything directly related to Java tuning.

A moment’s reflection convinced me that I was (as usual) kidding myself. It is certainly
true that end-to-end system performance takes up alot of my time, and that I sometimes
come across code that uses an O(n?) algorithm when it could use one with O(log N)
performance. Still, it turns out that every day, I think about GC performance, or the
performance of the JVM compiler, or how to get the best performance from Java En-
terprise Edition APIs.

That is not to minimize the enormous progress that has been made in the performance
of Java and JVMs over the past 15-plus years. When I was a Java evangelist at Sun during
the late 1990s, the only real “benchmark” available was CaffeineMark 2.0 from Pendra-
gon software. For a variety of reasons, the design of that benchmark quickly limited its
value; yet in its day, we were fond of telling everyone that Java 1.1.8 performance was
eight times faster than Java 1.0 performance based on that benchmark. And that was
true—Java 1.1.8 had an actual just-in-time compiler, where Java 1.0 was pretty much
completely interpreted.

Then standards committees began to develop more rigorous benchmarks, and Java
performance began to be centered around them. The result was a continuous improve-
ment in all areas of the JVM—garbage collection, compilations, and within the APIs.
That process continues today, of course, but one of the interesting facts about perfor-
mance work is that it gets successively harder. Achieving an eightfold increase in per-
formance by introducing a just-in-time compiler was a straightforward matter of en-
gineering, and even though the compiler continues to improve, we’re not going to see
an improvement like that again. Paralellizing the garbage collector was a huge perfor-
mance improvement, but more recent changes have been more incremental.




This is a typical process for applications (and the JVM itself is just another application):
in the beginning of a project, it’s easy enough to find archictural changes (or code bugs)
which, when addressed, yield huge performance improvements. In a mature application,
finding such performance improvements is quite rare.

That precept was behind my original concern that, to a large extent, the engineering
world might be done with Java performance. A few things convinced me I was wrong.
First is the number of questions I see daily about how this or that aspect of the JVM
performs under certain circumstances. New engineers come to Java all the time, and
JVM behavior remains complex enough in certain areas that a guide to how it operates
is still beneficial. Second is that environmental changes in computing seem to have
altered the performance concerns that engineers face today.

What’s changed in the past few years is that performance concerns have become bifur-
cated. On the one hand, very large machines capabable of running JVMs with very large
heaps are now commonplace. The JVM has moved to address those concerns with a
new garbage collector (G1), which—as a new technology—requires a little more hand-
tuning than traditional collectors. At the same time, cloud computing has renewed the
importance of small, single-CPU machines: you can go to Oracle or Amazon or a host
of other companies and very cheaply rent a single CPU machine to run a small appli-
cation server. (Youre not actually getting a single-CPU machine: you're getting a virtual
OS image on a very large machine, but the virtual OS is limited to using a single CPU.
From the perspective of Java, that turns out to be the same as single-CPU machine.) In
those environments, correctly managing small amounts of memory turns out to be quite
important.

The Java platform also continues to evolve. Each new edition of Java provides new
language features and new APIs that improve the productivity of developers—if not
always the performance of their applications. Best practice use of these language features
can help to differentiate between an application that sizzles, and one that plods along.
And the evolution of the platform brings up interesting performance questions: there
is no question that using JSON to exchange information between two programs is much
simpler than coming up with a highly optimized proprietary protocol. Saving time for
developers is a big win—but making sure that productivity win comes with a perfor-
mance win (or at least breaks even) is the real goal.

Who Should (and Shouldn’t) Read This Book

This book is designed for performance engineers and developers who are looking to
understand how various aspects of the JVM and the Java APIs impact performance.

If it is late Sunday night, your site is going live Monday morning, and you're looking for
a quick fix for performance issues, this is not the book for you.

x | Preface



If you are new to performance analysis and are starting that analysis in Java, then this
book can help you. Certainly my goal is to provide enough information and context
that novice engineers can understand how to apply basic tuning and performance prin-
ciples to a Java application. However, system analysis is a very broad field. There are a
number of excellent resources for system analysis in general (and those pricincples of
course apply to Java), and in that sense, this book will hopefully be a useful companion
to those texts.

At afundamentallevel, though, making Java go really fast requires a deep understanding
about how the JVM (and Java APIs) actually work. There are literally hundreds of Java
tuning flags, and tuning the JVM has to be more than an approach of blindly trying
them and seeing what works. Instead, my goal is to provide some very detailed knowl-
edge about what the JVM and APIs are doing, with the hope that if you understand how
those things work, you’ll be able to look at the specific behavior of an application and
understand why it is performing badly. Understanding that, it becomes a simple (or at
least simpler) task to get rid of undesirable (badly performing) behavior.

One interesting aspect to Java performance work is that developers often have a very
different background than engineers in a performance or QA group. I know developers
who can remember thousands of obscure method signatures on little-used Java APIs
but who have no idea what the flag -Xmn means. And I know testing engineers who can
get every last ounce of performance from setting various flags for the garbage collector
but who could barely write a suitable “Hello, World” program in Java.

Java performance covers both of these areas: tuning flags for the compiler and garbage
collector and so on, and best-practice uses of the APIs. So I assume that you have a good
understanding of how to write programs in Java. Even if your primary interest is not in
the programming aspects of Java, I do spent a fair amount of time discussing programs,
including the sample programs used to provide a lot of the data points in the examples.

Still, if your primary interest is in the performance of the JVM itself—meaning how to
alter the behavior of the JVM without any coding—then large sections of this book
should still be beneficial to you. Feel free to skip over the coding parts and focus in on
the areas that interest you. And maybe along the way, you’ll pick up some insight into
how Java applications can affect JVM performance and start to suggest changes to de-
velopers so they can make your performance-testing life easier.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Preface | xi



Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github,.com/ScottOaks/JavaPerformanceTuning.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from thisbook into your product’s documentation does require permission.

xii | Preface



We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Java Performance: The Definitive Guide by
Scott Oaks (O’Reilly). Copyright 2014 Scott Oaks, 978-1-449-35845-77

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

es) Safari Books Online is an on-demand digital library that
Sa fa rl delivers expert content in both book and video form from
Booksonline  the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro-
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil ly/java-performance-tdg.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

Preface | xiii



For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http:/twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

I would like to thank everyone who helped me as I worked on this book. In many ways,
this book is an accumulation of knowledge gained over my past 15 years in the Java
Performance Group at Sun Microsystems and Oracle, so the list of people who have
provided positive input into this book is quite broad. To all the engineers I have worked
with during that time, and particularly to those who patiently answered my random
questions over the past year, thank you!

I would especially like to thank Stanley Guan, Azeem Jiva, Kim LiChong, Deep Singh,
Martijn Verburg, and Edward Yue Shung Wong for their time reviewing draft copies
and providing valuable feedback. I am sure that they were unable to find all my errors,
though the material here is greatly improved by their input.

The production staff at O’Reilly was as always very helpful, and thanks to my editor
Meg Blanchette for all your encouragement during the process. Finally, I must thank
my husband James for putting up with the long nights and those weekend dinners where
[ was in a continual state of distraction.

xiv | Preface



Table of Contents

PEBIACE o-o-01m 5105 wirwmn wiem 315, 50008 510501000 3100 1 W S 08 HLE 870 08 SLSNTHE D OB OB GRS SN ix
1o IntroduCtion. . voos s vovaevissmsnsvunsnsvosvossesmevssnns sovernsesisssrennines |
A Brief Outline 2
Platforms and Conventions 2
JVM Tuning Flags -

The Complete Performance Story 5
Write Better Algorithms 5
Write Less Code 6

Oh Go Ahead, Prematurely Optimize 7
Look Elsewhere: The Database Is Always the Bottleneck 8
Optimize for the Common Case 9
Summary 10

2. An Approach to Performance Testing........cvveiiiiiinerioninsasiariinonnanss n
Test a Real Application 11
Microbenchmarks 11
Macrobenchmarks 16
Mesobenchmarks 18
Common Code Examples 20
Understand Throughput, Batching, and Response Time 24
Elapsed Time (Batch) Measurements 24
Throughput Measurements 25
Response Time Tests 26
Understand Variability 29
Test Early, Test Often 33
Summary 36

3. AlavaPerformance TOolbOX. . ... ccccrvneerescunsansossnonaenenns aseononsnaes 37

Operating System Tools and Analysis 37




CPU Usage 38

The CPU Run Queue 41
Disk Usage . 43
Network Usage 44
Java Monitoring Tools 46
Basic VM Information 47
Thread Information 50
Class Information 51
Live GC Analysis 51
Heap Dump Postprocessing 51
Profiling Tools 51
Sampling Profilers 52
Instrumented Profilers 54
Blocking Methods and Thread Timelines 55
Native Profilers 57
Java Mission Control 59
Java Flight Recorder 60
Enabling JFR 66
Selecting JFR Events 70
Summary 72
4. Working with the JIT Compiler........... e e s e bt ] i B 73
Just-in-Time Compilers: An Overview 73
Hot Spot Compilation 75
Basic Tunings: Client or Server (or Both) 77
Optimizing Startup 78
Optimizing Batch Operations 80
Optimizing Long-Running Applications 81
Java and JIT Compiler Versions 81
Intermediate Tunings for the Compiler 85
Tuning the Code Cache 85
Compilation Thresholds 87
Inspecting the Compilation Process 90
Advanced Compiler Tunings 94
Compilation Threads 94
Inlining 96
Escape Analysis 97
Deoptimization 98
Not Entrant Code 98
Deoptimizing Zombie Code 101
Tiered Compilation Levels 101

iv | TableofContents



Summary

An Introduction to Garbage Collection........... bas

Garbage Collection Overview
Generational Garbage Collectors
GC Algorithms
Choosing a GC Algorithm

Basic GC Tuning
Sizing the Heap
Sizing the Generations
Sizing Permgen and Metaspace
Controlling Parallelism
Adaptive Sizing

GC Tools

Summary

Garbage Collection Algorithms. .............
Understanding the Throughput Collector
Adaptive and Static Heap Size Tuning

Understanding the CMS Collector

Tuning to Solve Concurrent Mode Failures

Tuning CMS for Permgen
Incremental CMS
Understanding the G1 Collector
Tuning G1
Advanced Tunings
Tenuring and Survivor Spaces
Allocating Large Objects
AggressiveHeap
Full Control Over Heap Size
Summary

Heap Memory Best Practices...............

Heap Analysis
Heap Histograms
Heap Dumps
Out of Memory Errors
Using Less Memory
Reducing Object Size
Lazy Initialization

Immutable and Canonical Objects

String Interning

--------------------------------

---------------------------------

103

105
105
107
109
113
119
119
122
124
126
127
128
131

133
133
136
140
145
148
149
150
157
159
159
163
171
173
174

177
177
178
179
184
188
188
191
196
198

Table of Contents

| v



10.

Object Lifecycle Management
Object Reuse
Weak, Soft, and Other References
Summary

Native Memory Best Practices....... O

Footprint
Measuring Footprint
Minimizing Footprint
Native NIO Buffers
Native Memory Tracking
JVM Tunings for the Operating System
Large Pages
Compressed oops
Summary

Threading and Synchronization Performance. ..................

Thread Pools and ThreadPoolExecutors
Setting the Maximum Number of Threads
Setting the Minimum Number of Threads
Thread Pool Task Sizes
Sizing a ThreadPoolExecutor

The ForkJoinPool
Automatic Parallelization

Thread Synchronization
Costs of Synchronization
Avoiding Synchronization
False Sharing

JVM Thread Tunings
Tuning Thread Stack Sizes
Biased Locking
Lock Spinning
Thread Priorities

Monitoring Threads and Locks
Thread Visibility
Blocked Thread Visibility

Summary

Java Enterprise Edition Performance......................o0es

Basic Web Container Performance
HTTP Session State
Thread Pools

LR R R N R I S )

202
202
208
221

223
223
224
225
226
227
230
230
234
236

237
237
238
242
243
244
246
252
254
254
259
262
267
267
268
268
269
270
270
271
275

277
277
280
283

vi

| Table of Contents



1.

12

Enterprise Java Session Beans 283

Tuning EJB Pools 283
Tuning EJB Caches 286
Local and Remote Instances 288
XML and JSON Processing 289
Data Size 290
An Overview of Parsing and Marshalling 291
Choosing a Parser 293
XML Validation 299
Document Models 302
Java Object Models 305
Object Serialization 307
Transient Fields 307
Overriding Default Serialization 307
Compressing Serialized Data 311
Keeping Track of Duplicate Objects 313
Java EE Networking APIs 316
Sizing Data Transfers 316
Summary 319
Database Performance Best Practices. .. .. 9% s S 35 R JAB § I R e a6 321
JDBC 322
JDBC Drivers 322
Prepared Statements and Statement Pooling 324
JDBC Connection Pools 326
Transactions 327
Result Set Processing 335
JPA 337
Transaction Handling 337
Optimizing JPA Writes 340
Optimizing JPA Reads 342
JPA Caching 346
JPA Read-Only Entities 352
Summary 353
Java SE API Tips...... g —— SE—— R prap 355
Buffered I/O 355
Classloading 358
Random Numbers 362
Java Native Interface 364
Exceptions 366
String Performance 370

Table of Contents | vii



Logging 371
Java Collections API 373
Synchronized Versus Unsynchronized 373
Collection Sizing 375
Collections and Memory Efficiency 376
AggressiveOpts 378
Alternate Implementations 378
Miscellaneous Flags 379
Lambdas and Anonymous Classes 379
Lambda and Anonymous Classloading 381
Stream and Filter Performance 382
Lazy Traversal 383
Summary 385

A. Summaryof TuningFlags....................uueen 305,800 ) T O A A 387
[ A e Ceereieeeeaes s mme mre el Pe i SRR asswin 207

viil | Table of Contents



CHAPTER 1
Introduction

This is a book about the art and science of Java performance.

The science part of this statement isn’t surprising; discussions about performance in-
clude lots of numbers and measurements and analytics. Most performance engineers
have a background in the sciences, and applying scientific rigor is a crucial part of
achieving maximum performance.

Whatabout the art part? The notion that performance tuning is part art and part science
is hardly new, but it is rarely given explicit acknowledgment in performance discussions.
This is partly because the idea of “art” goes against our training.

Part of the reason is that what looks like art to some people is fundamentally based on
deep knowledge and experience. It is said that magic is indistinguishable from suffi-
ciently advanced technologies, and certainly it is true that a cell phone would look
magical to a knight of the Round Table. Similarly, the work produced by a good per-
formance engineer may look like art, but that art is really an application of deep knowl-
edge, experience, and intuition.

This book cannot help with the experience and intuition part of that equation, but its
goal is to help with the deep knowledge—with the view that applying knowledge over
time will help you develop the skills needed to be a good Java performance engineer.
The goal is to give you an in-depth understanding of the performance aspects of the
Java platform.

This knowledge falls into two broad categories. First is the performance of the Java
Virtual Machine (JVM) itself: the way in which the JVM is configured affects many
aspects of the performance of a program. Developers who are experienced in other
languages may find the need for tuning to be somewhat irksome, though in reality tuning
the JVM is completely analogous to testing and choosing compiler flags during com-
pilation for C++ programmers, or to setting appropriate variables in a php.ini file for
PHP coders, and so on.




The second aspect is to understand how the features of the Java platform affect perfor-
mance. Note the use of the word platform here: some features (e.g., threading and syn-
chronization) are part of the language, and some features (e.g., XML parsing perfor-
mance) are part of the standard Java API. Though there are important distinctions
between the Java language and the Java API, in this case they will be treated similarly.
This book covers both facets of the platform.

The performance of the JVM is based largely on tuning flags, while the performance of
the platform is determined more by using best practices within your application code.
In an environment where developers code and a performance group tests, these are
often considered separate areas of expertise: only performance engineers can tune the
JVM to eke out every last bit of performance, and only developers worry about whether
their code is written well. That is not a useful distinction—anyone who works with Java
should be equally adept at understariding how code behaves in the JVM and what kinds
of tuning is likely to help its performance. Knowledge of the complete sphere is what
will give your work the patina of art.

A Brief Qutline

First things first, though: Chapter 2 discusses general methodologies for testing Java
applications, including pitfalls of Java benchmarking. Since performance analysis re-
quires visibility into what the application is doing, Chapter 3 provides an overview of
some of the tools available to monitor Java applications.

Then it is time to dive into performance, focusing first on common tuning aspects: just-
in-time compilation (Chapter 4) and garbage collection (Chapter 5 and Chapter 6). The
remaining chapters focus on best practice uses of various parts of the Java platform:
memory use with the Java heap (Chapter 7), native memory use (Chapter 8), thread
performance (Chapter 9), Java Enterprise Edition APIs (Chapter 10), JPA and JDBC
(Chapter 11), and some general Java SE API tips (Chapter 12).

Appendix A lists all the tuning flags discussed in this book, with cross-references to the
chapter where they are examined.

Platforms and Conventions

This book is based on the Oracle HotSpot Java Virtual Machine and the Java Platform,
Standard Edition (Java SE), versions 7 and 8. Within versions, Oracle provides update
releases periodically. For the most part, update releases provide only bug fixes; they
never provide new language features or changes to key functionality. However, update
releases do sometimes change the default value of tuning flags. Oracle will doubtless
provide update releases that postdate publication of this book, which is current as of
Java 7 update 40 and Java 8 (as of yet, there are no Java 8 update releases). When an

2 | Chapter 1:Introduction



