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Preface

The recognition of the domain of mathematics called fibre bundles
took place in the period 1935-1940. The first general definitions were
given by H. Whitney. His work and that of H. Hopf and E. Stiefel
demonstrated the importance of the subject for the applications of
topology to differential geometry. Since then, some seventy odd
papers dealing with bundles have appeared. The subject has attracted
general interest, for it contains some of the finest applications of
topology to other fields, and gives promise of many more. It also
marks a return of algebraic topology to its origin; and, after many
years of introspective development, a revitalization of the subject
from its roots in the study of classical manifolds.

No exposition of fibre bundles has appeared. The literature is in a
state of partial confusion, due mainly to the experimentation with
a variety of definitions of “fibre bundle.” It has not been clear that
any one definition would suffice for all results. The derivations of
analogous conclusions from differing hypotheses have produced much
overlapping. Many “known” results have not been published. It
has been realized that certain standard theorems of topology are special
cases of propositions about bundles, but the generalized forms have not
been given.

The present treatment is an initial attempt at an organization. It
grew out of lectures which I gave at the University of Michigan in
1947, and at Princeton University in 1948. The informed reader will
find little here that is essentially new. Only such improvements and

fresh applications are made as must accompany any reasonably suc-
cessful organization.

The book is divided into three parts according to the demands
made on the reader’s knowledge of topology. The first part presup-
poses only a minimum of point set theory and closes with two articles
dealing with covering spaces and the fundamental group. Part II
makes extensive use of the homotopy groups of Hurewicz. Since no
treatment of these has appeared in book form, Part II opens with a
survey of the subject. Definitions and results are stated in detail;
some proofs are given, and others are indicated. In Part III we make
use of cohomology theory. Here, again, a survey is required because
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vl PREFACE

the standard treatments do not include the generalized form we must
use. A reader who is familiar with the elements of homology theory
will have little difficulty.

I must acknowledge my gratitude to Professor Sze-tsen Hu
and Dr. R. L. Taylor who read the manuscript and suggested many
improvements.

I wish to acknowledge also the aid of the National Academy of
Sciences in support of publication of this volume.

Numbers enclosed in brackets refer to the bibliography.

NORMAN STEENROD
May, 1960
Princeton University
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Part I. The General Theory of Bundles

§1. INTRODUCTION

1.1, Provisional definition. A fibre bundle ® consists, at least, of
the following: (i) a topological space B called the bundle space (or,
simply, bundle), (ii) a topological space X called the base space, (iii) a
continuous map

p: B—-X

of B onto X called the projection, and (iv) a space Y called the fibre.
The set Y,, defined by

Y, =p'(2),

is called the fibre over the point x of X. It is required that each Y, be
homeomorphic to Y. Finally, for each z of X, there is a neighborhood
V of z and a homeomorphism

¢: VXY—-p (V)
such that

po(z')y) = 2’ ZeV,ye?.

A cross-section of a bundle is a continuous map f: . X — B such that
pf(z) = z foreach z ¢ X.

The above definition of bundle is not sufficiently restrictive. A
bundle will be required to carry additional structure involving a group
G of homeomorphisms of Y called the group of the bundle. Before
imposing the additional requirements, consideration of a collection
of examples will show the need for these. The discussion of thege
examples will be brief and intuitive; each will be treated later in detail.

1.2. The product bundle. The first example is the product bundle
or product space B = X X Y. In this case, the projection is given
by p(z,y) = z. Taking V = X and ¢ = the identity, the last condi-
tion is fulfilled. The cross-sections of B are just the graphs of maps
X — Y. The fibres are, of course, all homeomorphic, however there
is a natural unique homeomorphism Y, — Y given by (z,y) 2 y. As
will be seen, this is equivalent to the statement that the group @ of the
bundle consists of the identity alone.

1.3. The Mdbius band. The second example is the M6bius band.
The base space X is a circle obtained from a line segment L (as indicated
in Fig. 1) by identifying its ends. The fibre ¥ is a line segment. The

3



4 GENERAL THEORY OF BUNDLES [Part I

bundle B is obtained from the product L X Y by matching the two
ends with a twist. The projection L X Y — L carries over under this
matching into a projection p: B — X. There are numerous cross-
sections; any curve as indicated with end points that match provides a
cross-section. It is clear that any two cross-sections must agree on at
least one point. There is no natural unique homeomorphism of Y,

c b

X X
Fia. 1.

with Y. However there are two such which differ by the map g of ¥
on itself obtained by reflecting in its midpoint. In this case the group
G is the cyclic group of order 2 generated by g.

1.4. The Klein bottle. The third example is the Klein bottle.
The preceding construction is modified by replacing the fibre by a circle
(Fig. 2). The ends of the cylinder L X Y are identified, as indicated,
by reflecting in the diameter de. Again, the group G, is the cyclic group

b

Fia. 2,

of order 2 generated by this reflection. (It is impossible to visualize
this example in complete detail since the Klein bottle cannot be
imbedded topologically in euclidean 3-space.)

1.6. The twisted torus. The fourth example, we will call the
twisted torus. The construction is the same as for the Klein bottle
except that reflection in the diameter de is replaced by reflection in the
center of the circle (or rotation through 180°). As before, the group G is
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cyclic of order 2. In contrast to the preceding two examples, this
bundle is homeomorphic to the product space X X Y and in such a way
as to preserve fibres. However to achieve this one must use homeo-
morphisms ¥ — Y, other than the two natural ones. But they need
not differ from these by more than rotations of ¥. This behavior is
expressed by saying that the twisted torus is not a product bundle, but
it is equivalent to one in the full group of rotations of Y.

1.6. Covering spaces. A covering space B of a space X is another
example of a bundle. The projection p: B — X is the covering map.
The usual definition of a covering space is the definition of bundle, in
§1.1, modified by requiring that each Y, is a discrete subspace of B,
and that ¢ is a homeomorphism of V X Y, with p~1(V) so that ¢(z,y)
= y. If, in addition, it is supposed that X is arcwise connected, motion
of a point z along a curve C in X from z, to z; can be covered by a con-
tinuous motion of Y. in B from Y, to Y., Choosing a base point z,,
each Y, can be put in 1-1 correspondence with ¥ = Y, using a curve in
X. This correspondence depends only on the homotopy class of the
curve. Considering the action on Y of closed curves from z, to z,, the
fundamental group =,(X) appears as a group of permutations on Y.
Any two correspondences of Y, with Y differ by a permutation cor-
responding to an element of »,(X). Thus, for covering spaces, the group
of the bundle 13 a factor group of the fundamental group of the base space.

1.7. Coset spaces. Another example of a bundle is a Lie group B
operating as a transitive group of transformations on a manifold X.
The projection is defined by selecting a point z, € X and defining p(b)
= b(zo). If Y is the subgroup of B which leaves z, fixed, then the
fibres are just the left cosets of ¥ in B. There are many natural cor-
respondences Y — Y., any b ¢ ¥, defines one by y — b'y. However
any two such y — by, y — b"-y differ by the left translation of ¥ cor-
responding to b='0’. Thus the group @ of the bundle coincides with the
fibre Y and acts on Y by left translations. Finding a cross-section for
such a bundle is just the problem of constructing in B a simply-transi-
tive continuous family of transformations.

1.8. The tangent bundle of a manifold. As a final example let X be
an n-dimensional differentiable manifold, let B be the set of all tangent
vectors at all points of X, and let p assign to each vector its initial point.
Then Y, is the tangent plane at z. It is a linear space. Choosing a
single representative Y, linear correspondences Y. — Y can be con-
structed (using chains of coordinate neighborhoods in X), but not
uniquely. In this case the group G of the bundle is the full linear
group operating on Y. A cross-section here is just a vector field over
X. The entire bundle is called the tangent bundle of X.



