

Technology Transfer
Through Foreign
Direct
Investment

BORIS RICKEN AND GEORGE MALCOTSIS

The Competitive Advantage of Regions and Nations

BORIS RICKEN AND GEORGE MALCOTSIS

© Boris Ricken and George Malcotsis 2011

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher.

Boris Ricken and George Malcotsis have asserted their moral rights under the Copyright, Designs and Patents Act, 1988, to be identified as the authors of this work.

Gower Applied Business Research

Our programme provides leaders, practitioners, scholars and researchers with thought provoking, cutting edge books that combine conceptual insights, interdisciplinary rigour and practical relevance in key areas of business and management.

Published by Gower Publishing Limited Wey Court East Union Road Farnham Surrey, GU9 7PT England

Gower Publishing Company Suite 420 101 Cherry Street Burlington, VT 05401-4405 USA

www.gowerpublishing.com

British Library Cataloguing in Publication Data

Ricken, Boris.

The competitive advantage of regions and nations: technology transfer through foreign direct investment.

- 1. Technology transfer Economic aspects. 2. Investments, Foreign.
- I. Title II. Malcotsis, George.

338.9'26-dc22

ISBN 9781409402381 (hbk) ISBN 9781409402398 (ebk)

Library of Congress Control Number: 2010937744

About the Authors

Boris Ricken went to school in Germany and the United States. He studied Political Science together with Economics and Law in Germany and Spain and graduated with a Masters in Political Science from the University of Constance, Germany. Subsequently, Boris earned a Doctorate in Business Administration from the University of Zürich, Switzerland where he also worked as a research assistant. He has performed research in the fields of organization studies, strategic management, social network analysis, knowledge and technology management and foreign direct investment. He has published various books and several peer-reviewed papers for international conferences. In addition, he is an external lecturer at Edinburgh Napier University in the UK, where he teaches a Technology Transfer and FDI module on the Investment Promotion and Economic Development M.Sc. programme. Dr Ricken has gained practical experience related to foreign direct investment and technology transfer whilst employed at a Swiss investment promotion agency. Following this he worked for four years as a Senior Strategy Consultant at the world's secondlargest building materials supplier. The company employs some 80,000 people and is present in more than 70 countries. In this position, Boris Ricken was responsible for foreign direct investment projects and business planning in Latin America and Asia. Boris Ricken is now in charge of internal projects and process management at PPCmetrics AG, a leading Swiss consulting firm for institutional investors.

> Dr Boris Ricken PPCmetrics AG boris.ricken@ppcmetrics.ch www.ppcmetrics.ch

George Malcotsis was born in Greece and grew up in Egypt. He graduated with a Bachelors and Masters in Engineering from the Universities of Surrey and London. He earned a Doctorate in Engineering from the University of Cambridge, England. He has attended a Senior Executive Business Administration Program at the Massachusetts Institute of Technology (MIT), Boston, USA. George began his career in a teaching and research position at the University of Cambridge. From 1976 to 1990 he worked for a major internationally active engineering consulting firm in Switzerland. His last position in the firm was that of

president. In 1990 Professor Malcotsis joined KPMG Switzerland as a partner at director level. His first responsibility was to head the international management consulting division. From 1997 to 2007 he was assigned as managing director of SOFI, the Swiss Organisation for Facilitating Investments, which was an instrument funded by the Swiss Government and operated by KPMG. In 2007 he was nominated visiting professor at the Napier University Business School in Edinburgh, Scotland. His special field of research and teaching is business planning and intercultural business negotiations. Professor Malcotsis' fields of expertise are corporate strategy and business planning, project evaluation, management training and coaching, international corporate finance and mergers and acquisitions. Through managing business operations in over 80 countries, he has gained extensive international experience and an ability to operate across cultural barriers. In 2007 he became Partner of DIAS.

Professor Dr George Malcotsis International Institute for Investment Promotion, DIAS Management george.malcotsis@dias-management.ch www.iiip.ch, www.dias-management.ch

Preface

There is little doubt that technology is of crucial importance for the competitiveness of companies, regions and entire economies. Technology is a determining element for firms and nations to increase productivity, to compete and to prosper. Today we see many developed and prosperous countries that were quite poor only about some decades ago:

- In Asia, Singapore and Korea have managed to increase their gross domestic product (GDP) by approximately six times since 1980.
- The Chinese economy has grown at an annual rate of approximately 10 per cent over the same period.
- In Latin America, Chile's economy has achieved an average annual increase of 4.3 per cent per year over the last 30 years.
- In Eastern Europe, Hungary has increased its GDP per capita from US\$3,190 in 1990 to US\$12,400 in 2009. Over the same period, the Polish GDP per capita has grown from a mere US\$1,600 to US\$11,100.

This impressive economic progress cannot be explained by increases in capital or a growth in the supply of labour alone. Rather, it is to a considerable degree driven by the acquisition and usage of new technologies such as machinery, management practices, or production techniques, all contributing to the overall productivity of an economy.

However, there is still a large gap in the technological advancement of nations. On the one hand, industrialized economies such as the United States, Japan, Germany or Switzerland are at the forefront of developing new technologies and applying these. Large shares of GDP in these countries are dedicated to research and development (R&D) of new products or process technologies. On the other hand, many emerging economies in Asia, Africa, Latin America and Eastern Europe have not yet developed their own R&D capacity. They rely on the transfer of existing technology from other countries in order to increase their productivity and competiveness. One major channel

of this transfer is foreign direct investment (FDI). Empirical studies have found positive and significant technology spillovers stemming from inward FDI. One of the major reasons is that FDI usually takes place by multinational corporations (MNCs), which exhibit a high ratio of R&D.

The importance of technology transfer via FDI implies that countries cannot simply sit and wait until new technologies arrive in their domain. Rather, companies, regions and nations need to systematically manage the identification, assessment, attraction, absorption and application of new technologies. In this book we want to provide a step-by-step guide on how to manage this entire process of technology transfer in foreign direct investments. The target audience of this book therefore consists of the following groups:

- Managers employed at investment promotion agencies. Almost every country has at least one such agency and several have subnational local development agencies. The World Association of Investment Promotion Agencies (WAIPA) alone brings together over 250 investment promotion agencies. This book wants to provide managers of these agencies with the relevant concepts and methods to identify, assess, attract and absorb foreign technologies through FDI.
- Managers of government bodies such as investment boards, ministries
 of economics or ministries of science and technology, active in the
 field of foreign direct investment and technology transfer. This
 book wants to support them in setting the appropriate policies
 and measures suitable to facilitate the economic and technological
 development of their country.
- Managers working in *companies* active in the field of foreign direct investment, such as local competitors, suppliers, clients, joint venture partners, or wholly owned subsidies of multinational enterprises. Especially in emerging markets, firms strive to absorb new technologies, knowledge and practices in order to gain a competitive advantage. This book aims to provide these managers with a deeper understanding on the determents of a MNC's decision on an FDI project as well as on the processes and mechanisms of technological spillovers to local companies.
- Managers being employed at international organizations, development banks and technology transfer intermediaries, for

PREFACE xix

example the World Bank, Asian Development Bank, European Bank for Reconstruction and Development (EBRD), United Nations Conference on Trade and Development (UNCTAD), United Nations Industrial Development Organization (UNIDO) etc. targeting issues of economic development, FDI and technology transfer

- Students in programmes related to economic development, international economics, investment promotion, FDI and technology transfer. This also includes certificate training programmes targeting career professionals in the public or private sectors related to foreign direct investment.
- Researchers and scientists active in the field of economic development, international economics, international management, foreign direct investment, technology management and technology transfer.

As the target audience of this book primarily consists of managers and students, we have focused on providing concepts and methods applicable in practice. Although theoretical considerations are presented here, our aim has been to keep the presentation of theories and the state of literature relatively short. Also, we have sought to follow an interdisciplinary approach on the topic, integrating concepts and methods from economics on the one hand and the business and management literature on the other hand.

We especially want to thank DIAS (the Direct Investment Advisory Services) and the International Institute of Investment Promotion in Switzerland for supporting this book project. In addition, we want to thank the students participating in the module Technology Transfer and FDI of the M.Sc. Investment Promotion and Economic Development Program offered by Edinburgh Napier University and DIAS for their input to this book.

In order to further advance this book, we are happy to hear comments, critical remarks and feedback.

Boris Ricken and George Malcotsis Zürich and Baden, Switzerland, April 2011

List of Abbreviations

APCTT Asian and Pacific Centre for Transfer of Technology

APEC Asia-Pacific Economic Cooperation

BATNA best alternative to a negotiated agreement

BOI Board of Investment (Thailand)
CAGR compound annual growth rate

CAPEX capital expenditure

CAST Chinese Academy of Space Technology

CBERS China–Brazil Earth Resources Satellite Programme

CORFO Chilean Economic Development Agency
CRM customer relationship management

CSIR Council of Scientific and Industrial Research (India)

DCF discounted cash flow

DIAS Direct Investment Advisory Services

DST Department of Science and Technology (South Africa)
EBRD European Bank for Reconstruction and Development

EU European Union

FDI foreign direct investment

GATT General Agreement on Tariffs and Trade

GDP gross domestic product GNP gross national product

HICOM Heavy Industries Corporation of Malaysia
IASP International Association of Science Parks

ICAMT International Centre for the Advancement of Manufacturing

Technology (Bangalore)

ICSID International Center for Settlement of Investment Disputes

ICT information and communication technology IDA Industrial Development Agency (Ireland)

IPA Investment Promotion Agency
IPR intellectual property rights
IMF International Monetary Funds

JV joint venture

MNC multinational corporation

NESDP National Economic and Social Development Plan (Thailand)

NIPE National Institute for Space Research (Brazil)

OECD Organisation for Economic Co-operation and Development

pa per annum

PPP purchasing power parity
R&D research and development
SEB Skandinaviska Enskilda Banken

SOFI Swiss Organisation for Facilitating Investments
SWOT strengths, weaknesses, opportunities, threats
TRIPS trade-related aspects of intellectual property rights
UNCTAD United Nations Conference on Trade and Development
UNESCAP United Nations Economic and Social Commission for

Asia and the Pacific

UNIDO United Nations Industrial Development Organization WAIPA World Association of Investment Promotion Agencies

WEF World Economic Forum
WTO World Trade Organization
WWEA World Wind Energy Association

Contents

List of Figures		1X
List of Tables		xi
List of Boxes		xiii
About the Authors		xv
Preface		xvii
List	of Abbreviations	xxi
1	Introduction	1
	1.1 The Role of Technology	1
	1.2 The Aim of this Book	6
	1.3 The Structure of this Book	6
PA	RT I THEORETICAL FOUNDATIONS	
2	Understanding Technology	13
	2.1 Defining Knowledge and Technology	13
	2.2 Basic Characteristics of Technology	16
	2.3 Types of Technology	17
	2.4 Mediums for Technology Storage	21
	2.5 Technological Capabilities	22
	2.6 Technological Evolution	24
3	The Importance of Technology	27
	3.1 Firms: Generating a Competitive Advantage	27
	3.2 Nations: Increasing Factor Productivity	31
4	Theories of Technology Transfer	35
	4.1 The Theory of Technology Conversion	35
	4.2 The Theory of Absorptive Capacity	38
	4.3 Social Network Theory	41
	4.4 Case Study: Technology Transfer to Korea's	
	Automotive Industry	43
	4.5 Key Implications for Practice	45

5	Foreign Direct Investment	47
	5.1 Historical and Recent Developments in FDI	47
	5.2 Definition of FDI	50
	5.3 Types and Forms of FDI	50
	5.4 Determinants of FDI	53
	5.5 Potential Contributions of FDI	57
6	FDI and Technology Transfer	59
	6.1 Internal Transfer from the MNC to its Local Subsidiary	60
	6.2 External Transfer 1: Horizontal Spillover to Competitors	62
	6.3 External Transfer 2: Vertical Spillover to Buyers and Suppliers	63
PAI	RT IITHE PRACTICAL PROCESS	
7	An Overview of the Practical Processes of Technology Transfer	69
8	Developing a Technology Strategy	73
	8.1 Introduction	73
	8.2 Development of Technology Mission Statement	76
	8.3 Strategic Analysis	79
	8.4 Formulation of Strategic Themes	85
	8.5 Technology Strategy Implementation	88
	8.6 Strategy Example	90
9	Gathering Information on Technologies	97
	9.1 Categories of Information on Technologies	98
	9.2 Sources of Information on Technologies	100
	9.3 Searching Techniques	103
10	Technology Assessment	105
	10.1 Phases of Technology Assessment	106
	10.2 Methods of Technology Assessment	109
	10.3 Best Practices of Technology Assessment	124
11	Technology Attraction	127
	11.1 Policy Measures for Attracting FDI	128
	11.2 Policy Measures to Stimulate Technology Transfer via FDI	131
	11.3 Negotiations	136

CONTENTS vii

12	Technology Absorption	141
	12.1 Building Absorption Capacity	142
	12.2 Facilitating Interaction	148
	12.3 Case Study: Thailand's Electronics Industry	153
13	Technology Application	161
	13.1 Introduction	161
	13.2 Internal Usage: Process Technology	163
	13.3 External Usage: Product Technology	166
14	Performance Measurement	173
	14.1 Benefits of Performance Measurement	174
	14.2 Types of Performance Measurement	175
	14.3 Measuring Technology Transfer	178
15	Integrated Case Studies	187
	15.1 Introduction	187
	15.2 Russia: Agriculture and Agro-processing Technology	189
	15.3 Egypt: Cotton and Textile Production Technology	193
	15.4 Chile: Wine Production Technology	195
	15.5 Malaysia: Automotive Manufacturing Technology	198
	15.6 Estonia: Banking Technology	203
	15.7 Ireland: ICT and Software Development Technology	208
16	Summary and Conclusions	215
Refer	ences	219
Index		229

List of Figures

Figure 1.1	Gross domestic expenditure on R&D in 2007 as a	
	percentage of GDP	5
Figure 1.2	Share of countries in triadic patent families in 2006	5
Figure 1.3	The structure of this book	7
Figure 2.1	A knowledge hierarchy	15
Figure 2.2	The technology iceberg	19
Figure 2.3	A pyramid of technological capabilities	22
Figure 2.4	The technology S-curve	25
Figure 3.1	Output growth related to capital	32
Figure 4.1	Modes of technology conversion	36
Figure 4.2	Internal and external communication channels	39
Figure 4.3	Strong and weak ties	41
Figure 5.1	Inward FDI in US\$ at current prices and exchange rates	48
Figure 5.2	Percentage change in FDI inflows and real GDP	49
Figure 6.1	Three forms of technology transfer in FDI	60
Figure 7.1	Managing the process of technology transfer in FDI	69
Figure 8.1	Technology strategy (phase 1)	73
Figure 8.2	Steps of technology strategy development	75
Figure 8.3	Overall and technology mission statement	77
Figure 8.4	An example of the process of vision formulation	79
Figure 8.5	Internal and external influences	80
Figure 8.6	An example of a strategy map	88
Figure 9.1	Information gathering (phase 2)	97
Figure 10.1	Technology assessment (phase 3)	105
Figure 10.2	Steps in technology assessment	106
Figure 10.3	Market saturation	110
Figure 10.4	S&P/Case–Schiller Index of 10 metropolitan cities (USA)	110
Figure 10.5	Steps of a utility analysis	119
Figure 11.1	Technology attraction (phase 4)	127
Figure 11.2	Internal technology transfer	127
Figure 12.1	Technology absorption (phase 5)	141
Figure 12.2	Thailand's development policies	154
Figure 12.3	The production process of electronic goods	157
Figure 13.1	Technology application (phase 6)	161

Figure 13.2	Obstacles and measures for technology usage	163
Figure 13.3	The marketing process	169
Figure 14.1	Performance measurement (phase 7)	173
Figure 14.2	The tree of performance measurement	176
Figure 14.3	Three types of performance measurement	177
Figure 15.1	Malaysian real GDP growth	199
Figure 15.2	FDI inflows to Ireland in US\$ million	209

List of Tables

Table 4.1	Factors influencing absorptive capacity	40
Table 6.1	FDI and technology transfer	59
Table 8.1	Analysing internal factors influencing technology transfer	83
Table 8.2	Analysing external factors influencing technology transfer	84
Table 8.3	SWOT analysis	86
Table 8.4	Development of measures for strategic themes	89
Table 8.5	Technology mission statement for Brazil (fictive)	91
Table 8.6	Internal factors influencing technology transfer (example)	92
Table 8.7	External factors influencing technology transfer (example)	93
Table 8.8	SWOT analysis (example)	94
Table 8.9	Development of measures (example)	95
Table 10.1	Cross-impact matrix	118
Table 10.2	Weighting of evaluation criteria	122
Table 10.3	Utility rating of alternatives	123
Table 10.4	Overall results of utility analysis	124
Table 14.1	Potential indicators for business processes	180
Table 14.2	Potential indicators for results of technology transfer	184

List of Boxes

Box 1.1	Singapore – a success story of technology transfer	3
Box 2.1	A practical example to illustrate the knowledge hierarchy	15
Box 2.2	Hard and soft technology in the former Soviet Union	18
Box 2.3	Reverse engineering in India's pharmaceutical industry	24
Box 3.1	The cost advantages of Dell's supply chain	30
Box 3.2	The differentiation advantages of Federal Express	30
Box 3.3	The predictions of Thomas Malthus	31
Box 3.4	China's economic growth and the role of technology	33
Box 6.1	Backward linkages to Spanish and Portuguese	
	automotive suppliers	64
Box 8.1	Kenya's lack of technology strategy	74
Box 8.2	Technology vision, mission and core values in South Africa	77
Box 9.1	The technology market of APCTT	102
Box 10.1	The process of evaluating solar energy technology	108
Box 10.2	Trend-line analysis and the US housing crises of 2007–2008	111
Box 10.3	The Meadows' model of resource use	112
Box 10.4	An example of the Delphi method:	
	forecasting water management	115
Box 10.5	Performing a DCF analysis of an aluminium smelter in Iceland	117
Box 11.1	China – successful policy measures via special economic zones	130
Box 11.2	Dispute settlement in Malaysia	131
Box 11.3	R&D incentives in Asian countries	133
Box 11.4	The Republic of Korea's (South Korea)	
	change in national policies	135
Box 11.5	The Federation of German Industries on technology hold-back	136
Box 12.1	Monitoring future skill needs in Singapore	143
Box 12.2	Korea's policy shifts in education	144
Box 12.3	Examples for joint projects between foreign affiliates and the	
	education system	145
Box 12.4	Policies in the Republic of Korea to attract back scientists	146
Box 12.5	Public research institutes in India	147
Box 12.6	Science parks in various countries	150
Box 12.7	Experience from joint ventures in Malaysia	152
Box 13.1	Failing application of boiling water in a Peruvian village	162