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Principles of Optics for Engineers

Uniting historically different approaches by presenting optical analyses as solutions of
Maxwell’s equations, this unique book enables students and practicing engineers to fully
understand the similarities and differences between the various methods.

The book begins with a thorough discussion of plane wave analysis, which provides a
clear understanding of optics without considering boundary condition or device config-
uration. It then goes on to cover diffraction analysis, including a rigorous analysis of
TEM waves using Maxwell’s equations, and the use of Gaussian beams to analyze
different applications. Modes of simple waveguides and fibers are also covered, as well
as several approximation methods including the perturbation technique, the coupled
mode analysis, and the super mode analysis. Analysis and characterization of guided
wave devices, such as power dividers, modulators, and switches, are presented via these
approximation methods.

With theory linked to practical examples throughout, it provides a clear understanding
of the interplay between plane wave, diffraction, and modal analysis, and how the
different techniques can be applied to various areas such as imaging, spectral analysis,
signal processing, and optoelectronic devices.

William S. C. Chang is an Emeritus Professor of the Department of Electrical and
Computer Engineering, University of California, San Diego (UCSD). After receiving
his Ph.D. from Brown University in 1957, he pioneered maser and laser research at
Stanford University, and he has been involved in guided-wave teaching and research at
Washington University and UCSD since 1971. He has published over 200 technical
papers and several books, including Fundamentals of Guided-Wave Optoelectronic
Devices (Cambridge, 2009), Principles of Lasers and Optics (Cambridge, 2005) and
RF Photonic Technology in Optical Fiber Links (Cambridge, 2002).
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Optics is a very old field of science. It has been taught traditionally as propagation,
imaging, and diffraction of polychromatic natural light, then as interference, diffraction,
and propagation of monochromatic light. Books like Principles of Optics by E. Wolf in
1952 gave a comprehensive and extensive in-depth discussion of properties of
polychromatic and monochromatic light. Topics such as optical waveguide, fiber optics,
optical signal processing, and holograms for laser light have been presented separately in
more recent books. There appears to be no need for any new book in optics. However,
there are several reasons to present optics differently, such as is done in this book.

Many contemporary optics books are concerned with components and instruments
such as lenses, microscopes, interferometers, gratings, etc. Reflection, refraction, and
diffraction of optical radiation are emphasized in these books. Other books are
concerned with the propagation of laser light in devices and systems such as optical
fibers, optical waveguides, and lasers, where they are analyzed more like microwave
devices and systems. The mathematical techniques used in the two approaches are very
different. In one case, diffraction integrals and their analysis are important. In the other
case, modal analysis is important. Students usually learn optical analysis in two separate
ways and then reconcile, if they can, the similarities and differences between them.
Practicing engineers are also not fully aware of the interplay of these two different
approaches. These difficulties can be resolved if optical analyses are presented from the
beginning as solutions of Maxwell’s equations and then applied to various applications
using different techniques, such as diffraction or modal analysis.

The major difficulty to present optics from the solutions of Maxwell’s equations is the
complexity of the mathematics. Complex mathematical analyses often obscure the basic
differences and similarities of the mathematical techniques and mask the understanding
of basic concepts.

Optical device configurations vary from simple mirrors to complex waveguide
devices. How to solve Maxwell’s equations depends very much on the configuration
of the components to be analyzed. The more complex the configuration, the more
difficult the solution. Optics is presented in this book in the order of the complexity of
the configuration in which the analysis is carried out. In this manner, the reasons for
using different analytical techniques can be easily understood, and basic principles are
not masked by any unnecessary mathematical complexity.

Optics in unbounded media is first presented in this book in the form of plane wave
analysis. A plane wave is the simplest solution of Maxwell’s equations. Propagation,
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refraction, diffraction, and focusing of optical radiation, even optical resonators and
planar waveguides, can be analyzed and understood by plane wave analysis. It leads
directly to ray optics, which is the basis of traditional optics. It provides a clear
demonstration and understanding of optics without considering boundary condition or
device configuration. Even sophisticated concepts such as modal expansion can also be
introduced using plane waves. Plane wave analysis is the focus of the first two chapters.

Realistically, wave propagation in bulk optical components involves a finite boundary
such as a lens that has a finite aperture. Plane wave analysis can no longer be used in this
configuration. However, in these situations, the waves are still transverse electric and
magnetic (TEM). Therefore, TEM waves are rigorously analyzed using Maxwell’s
equations in Chapter 3. The diffraction analysis presented in Chapter 3 is identical to
traditional optical analysis. Since applications of diffraction analysis are already covered
extensively in existing optics books, only a few basic applications of diffraction theory
are presented here. The distinct features of our presentation here are: (1) Both the TEM
assumption of the Kirchoff’s integral analysis and the relation between diffraction
theory and Maxwell’s equations are clearly presented. (2) Modern engineering concepts
such as convolution, unit impulse response, and spatial filtering are introduced.

Diffraction integrals are again used to analyze laser cavities in the first part of
Chapter 4, for three reasons: (1) Laser modes are used in many applications. (2) The
diffraction analysis leads directly to the concept of modes. It is instructive to recognize
that they are inter-related. (3) An important consequence of laser cavity analysis is that
laser modes are Gaussian. A Gaussian mode retains its functional form not only inside,
but also outside of the cavity.

The second part of Chapter 4 is focused on Gaussian beams and how different
applications can be analyzed using Gaussian beams. Gaussian modes are also natural
solutions of the Maxwell’s equations. It constitutes a complete set. Just like any other set
of modes, such as plane waves, any radiation can be represented as summation of
Gaussian modes. When the diffraction integral is used in Chapter 3 to analyze waves
propagating through components with finite apertures, the diffraction loss needs to be
calculated by the Kirchoff’s integral for each aperture. In comparison, the diffraction
loss of a Gaussian beam propagating through an aperture can be calculated without any
integration. Therefore, a Gaussian beam is used to represent TEM waves in many
engineering applications.

Although TEM modes exist in solid-state and gas laser cavities, waves propagating in
waveguides and fibers are no longer transverse electric and magnetic. Microwave-like
modal analysis needs to be used to analyze optical devices that have dimensions of the
order of optical wavelength.

Optical waveguides and fibers are dielectric devices. They are different from
microwave devices. Microwave waveguides have closed metallic boundaries. The
mathematical complexity of finding microwave waveguide modes is much simpler
than that of optical waveguides.

The distinct features in the analysis of dielectric waveguides are: (1) There are
analytical solutions for very few basic device configurations because of the complex
boundary conditions. Analyses of practical devices need to be carried out by
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approximation techniques. (2) There is a continuous set of radiation modes in addition to
the discrete guided-wave modes. Any abrupt discontinuity will excite radiation modes.
(3) The evanescent tail of the guided-wave modes not only reduces propagation loss, but
also provides access to excite the modes by coupling through evanescent fields.
(4) Multiple modes are often excited in devices. The performance of the device depends
on what modes have been excited.

Because of the complexity of modal analysis of optical waveguides and fibers, it is
presented here in four parts.

In the first part, modes of simple waveguides and fibers are discussed in Chapter 5.
Analytical solutions for planar waveguides and step—index fiber are presented. Although
these are not realistic devices, they are the only solutions that can be obtained from
Maxwell’s equations. Modes of these simple basic devices are very useful for
demonstrating various properties of the guided waves. Approximation methods are
then presented to discuss modes of realistic devices. For example, the effective index
method is used here to analyze channel waveguides.

Guided-wave devices operate by mutual interactions among modes. These
interactions need to be analyzed in the absence of exact solutions. Therefore, several
approximation methods, the perturbation technique, the coupled mode analysis, and the
super mode analysis, are presented in Chapter 6. The differences and similarities of the
three methods are compared and explained. Examples in applications are used to
demonstrate these techniques.

In the third and fourth parts, modal analyses of passive and active guided-wave
devices are presented. Passive guided-wave devices function mainly as power dividers,
wavelength filters, resonators, and wavelength multiplexers. In each of these system
functions, there are several different devices that could be used. Thus, devices
that perform the same system function are discussed and analyzed together. Their
performance is compared.

Active devices utilize electro-optical effects of the electrical signals to operate.
Discussion of active guided-wave devices is complex because there are different
physical mechanisms involved. How these mechanisms work is reviewed.The electrical
performance, as well as the optical performance of these devices are analyzed.

In summary, when optics are presented as solutions of Maxwell’s equations, the
inter-relation between plane wave, diffraction, and modal analysis becomes clear. For
example, the use of modal analysis is not limited to waveguides and fibers. There can be
modes and modal expansion in plane wave analysis, as well as in diffraction optics. As
we learn optics step by step in the order of the mathematical complexity and device
configuration, we learn optical analysis from various perspectives.



1  Optical plane waves in an
_unbounded medium
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Engineers involved in design and the use of optical and opto-electronic systems are often
required to analyze theoretically the propagation and the interaction of optical waves
using different methods. Sometimes it is diffraction analysis; on other occasions, modal
analysis. They are all solutions of Maxwells equations, yet they appear to be very
different. All optical analyses should be presented as solutions of Maxwell s equations so
that the inter-relations between different analytical techniques are clear. In order to
avoid unnecessary mathematical complexity, the simplest analysis should be presented
first. In this book, optics will be presented first by plane wave analysis, followed by
diffraction and modal analyses, in increasing order of complexity.

Plane waves are the simplest form of optical waves that can be derived rigorously from
Maxwells equations. Plane wave analysis can be used to derive ray analysis, which is the
basis of traditional optics. It can be applied directly to analyze many optical phenomena
such as refraction, reflection, dispersion, etc. It can also be used to demonstrate sophis-
ticated concepts such as superposition, interference, resonance, guided waves, and
Fourier optics. Plane wave analyses will be the focus of discussion in Chapters 1 and 2.

However, plane wave analysis cannot be used to analyze diffraction, laser modes,
optical signal processing, and propagation in small optical components such as fibers
and waveguides, etc. These analyses will be the focus of discussion in subsequent chapters.

1.1 Introduction to optical plane waves

Plane wave analysis is presented here in full detail, so that the mathematical derivations
and details can be fully exhibited and the physical significances of these analyses are
Jfully explained.

1.1.1 Plane waves and Maxwell’s equations

All optical waves are solutions of the Maxwell’s equations (assuming there are no free
carriers),

(1.1)
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(a)

Here E is the electric field vector, H is the magnetic field vector, D is the displacement
vector, and B is the magnetic induction vector. For isotropic media,

B=uH, D=¢E (1.2)

Let iy, iy, and i, be unit vectors in the x, y, and z directions of an x-y-z rectangular
coordinate system. Then E, H and the position vector r can be written as

E = Ei; + Eyiy + By H = Hyiy + Hyiy + Hyiy (1.3a)
r=xix +yiy +2zi; (1.3b)

A special solution of Egs. (1.1) and (1.2) is a plane wave that has no amplitude
variation transverse to its direction of propagation. If we designate the z direction as the
direction of propagation, this means that

0 0

Substituting 6/0x = 0 and 6/8y = 0 into the V x E and V x H equations leads to two
distinct groups of equations:

OE, OH, OE,>? o
#:ﬂaHx/at, 62 = 86Ey/6t, or 6—2';:;18?Ey (15&)
and
OH, OF, oH,? &
_azy = —e0E[0t, —* = —uoH,[ot; or az; =ueszH,  (1.5b)

Clearly, these are two separate independent sets of equations. £, and H, are related only
to each other, and #, and E, are related only to each other. Solutions of Eq. (1.5a) are
plane waves with y polarization of the electric field (or x polarization in magnetic field).
Solutions of Eq. (1.5b) are plane waves with x polarization in the electric field £ (or y
polarization in magnetic field ).

The y-polarized plane wave

For a cw optical plane wave with a single angular frequency w that has a time variation,
¢/, and for lossless media (i.e. the medium has a real value of ¢), there is a well-known
solution of Eq. (1.5a) in the complex notation. It is

E, = E{;e"jﬁzeimt’ H, = H£e_fﬂze/“"’ H{ = —\/ZEL (1.6a)

where f = w,/ué. The real time domain expression for the complex E, shown in (1.6a)
is |E§‘cos(ﬂz — wt + @) where ¢ is the phase of ’f?y'lat z =0 and ¢ = 0. The angular

frequency w is related to the optical frequency f by @ = 2xf. This wave is known
as a y-polarized forward propagating wave in the +z direction. The phase of



(b)

Optical plane waves in unbounded medium

E, ie.fz — wt = B(z — vyt), is a constant when z = v,¢. Thus v, is known as the phase
velocity of the plane wave.

If the medium in which the plane wave propagates is free space, then £ = ¢, and the
free space phase velocity isc, = 1/, /g,=3 X 108 m s~ In free space, the optical wave
length for a frequency f'is 4,, where f1, = ¢,. If the medium is a lossless dielectric
material with a permittivity &, then its index of refraction is »n = \/¢/e,,
B = nB, = nw./ue,. If ¢ is a function of wavelength, the medium is said to be dispersive.

There is also a second solution for the same polarization of the electric field,

E, = Ejé# ™, H, = HleFe™, HE= \/EEf (1.6b)

This solution is a backward propagating wave because the phase of E,, i.e.
pz + wt = B(z+ v,t), at any time ¢ is a constant when z = —v,t and v, = /.
If the permittivity has a loss component, &€ = &, — je,, then

B = wvule —jes) =B, —Jp, (1.7)

The phase velocity of light is now v, = ¢ = w/f,. The amplitude of the plane wave
decays as e #-*'for forward waves and e*/#-*'for backward waves. In comparison with the
phase velocity of free space, the ratio of the phase velocities, c,/c, is the effective
refractive index of the plane wave, n = ¢,f, /@ = ¢,/c. The wavelength in the medium
is A = A,/n. In addition to 8, or phase velocity, the loss of optical waves in the medium is
an important consideration in applications.

The x-polarized plane wave
A similar solution exists for the x-polarized electric field and H,. For the forward wave,

H= Hﬁe—jﬁzeiwr’ E. = E{e-fﬂze"‘”‘, E{ = \/ng (1.8a)
For the backward wave,
H,=HeW®e®, B =Ed¥™, E = -\/’gﬁj (1.8b)

In summary, both equations (1.5a) and (1.5b) are second-order differential equations.
Mathematically, each of them has two independent solutions, which are the forward and
the backward propagating waves. However, Eqgs. (1.5a) and (1.5b) are also two separate
set of equations. The solution for Eq. (1.5a) describes a plane wave polarized in the y
direction. The solution of Eq. (1.5b) describes a plane wave polarized in the x direction.
Both waves have the same direction of propagation. £ is usually designated as a
propagation vector along the direction of propagation z that has magnitude £,

B=Ppi, z=1zi;, Pr=p°z (1.9)

The forward wave has +f, the backward wave has —.



