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The most recent comprehensive data collection on diffusion in metals was
published in 1990 (Landolt-Bornstein NS III 26). In the meantime numerous new
results on self-diffusion and impurity diffusion in solid metals have been
published. Especially, impurity diffusion coefficients measured by means of
electron probe microanalysis (EPMA), Rutherford backscattering (RBS) and
heavy ion backscattering (HIRBS) have been reported. Moreover, a number of
earlier results had to be reassessed.

The present comprehensive data collection is based on a critical valuation of
the hitherto published data and and aims at being the most complete data
collection on this subject at this moment.
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Introduction

The first diffusion investigation in metals was that of Au in lead by Roberts-
Austen in 1896. Between 1930 and 1935 further impurity and self-diffusion
investigations in lead had been performed by Hevesy, Seith and coworkers (for
references see Chapter 4). Later on, when the first artificial radioisotopes
became available, self-diffusion in gold [00.01, 00.02], copper [00.03, 00.04],
silver [00.05] and zinc [00.06] was measured. Systematic investigations on self-
diffusion and impurity diffusion in solid metals started with the availability of
numerous artificial radioisotopes after the Second World War. Results of non-
radioactive investigations represented a minority in that period. In the last two
decades, however, the fraction of non-radioactive measurements has markedly
increased.

The last comprehensive data collection in metals and alloys was published in
1990 [00.07], including self-diffusion [00.08] and impurity diffusion [00.09] in
metals. Since then numerous further investigations have been performed,
especially in aluminum, a- and f-titanium, a-zirconium and o-iron. Moreover, a
large number of earlier investigations had to be reassessed.

The present collection contains data of self-diffusion and impurity diffusion
in metals. Diffusion in silicon, germanium, selenium and tellurium is not topic of
the present collection. Diffusion of C, N and O in metals is also not included in
the present data collection. Data of these impurities are compiled in Ref. [00.10].

0.1. EXPERIMENTAL TECHNIQUES

Numerous methods have been developed for the measurement of self-
diffusion and impurity diffusion coefficients in metals. The most reliable
experimental data can be obtained with the aid of tracer sectioning techniques
by means of radioactive isotopes. Also a number of non-radioactive investiga-
tion methods permits the determination of impurity diffusion coefficients.
Furthermore, some non-destructive techniques, especially scattering experi-
ments, were used for diffusion investigations. The methods for measuring
diffusion coefficients have been described in detail in a number of reviews
[01.01-01.04]. In the present chapter the most frequently applied measuring
methods are briefly described.
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Diffusion investigations are performed in a concentration gradient. The
temporal and local change of the tracer concentration c(x,y,z,t) is described by
Fick’s second law

g _ oae (01.01)
ar

The serial sectioning technique consists of measuring the activity of thin
sections removed from the sample parallel to the surface, i.e. normal to the
diffusion direction. This simplifies Eq. (01.01) to the one-dimensional form

dc d*c

—_D-—— 1.02
S=DL; (01.02)

The solutions of Egs. (01.01) and (01.02) depend on the initial and boundary
conditions, respectively, and are collected in Refs. [01.05, 01.06].

0.1.1 Radiotracer techniques

The experimental details of the measurement of tracer diffusion coefficients
are extensively reviewed by Rothman [01.02]: sample preparation, tracer
deposition, annealing, temperature measurement, determination of the effective
annealing time, sectioning and counting (for further reviews see Refs. [01.07,
01.08]).

In the present chapter the different sectioning techniques and the respective
range of measured diffusion coefficients are compared. Especially the penetration
plots give informations concerning the accuracy of D. A number of possible
sources in the determination of D has to be taken into consideration:

e Falsification of the penetration profile owing to surface diffusion contributions
can be avoided by removing a layer of some /Dt thickness from the side faces
of the samples.

e Temperature measurements by use of thermocouples (mainly Pt/Pt(Rh),
Ni(Cr)/Ni) may lead to errors of +1.5K, which corresponds to an uncertainty
of +3% in D. Temperature measurements using optical pyrometry lead
to distinctly larger uncertainties. An error of about 30K in T at 3,000K
corresponds to an uncertainty of about 20% in D.

* For the determination of the accurate diffusion time a correction for the heating
and cooling period has to be performed [01.09].

Macrosectioning techniques
Direct profile measurements. The most accurate methods for the measurement
of diffusion coefficients are sectioning techniques using precision lathe and
microtome, which permits the removal of sections of only a few microns thick.
The section thickness is determined by weighing. Microtome and lathe sectioning
is suited for ductile but not too soft materials.

If an infinitesimally thin layer (« /Dt) of radiotracers is deposited on the flat
surface of the sample, the initial and boundary conditions for the semi-infinite
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diffusion couple are

hmc(x 0) = M for |x| <4, i.e.o0 for x=0

(01.03)
hrr(l)c(x,O) = O for |x|>0, i.e. 0 for x#0
o0—

where M is the deposited amount in g/m” and & the layer thickness. The
so-called thin film solution of Eq. (01.02) yields [01.05]:

M x2

2\/;r_[Ttexp< 4Dt> (01.04)
which is linear in In ¢ against x* (see Figure 01.01). The slope of this plot
yields D.

Deviations from linearity and the respective error sources are treated in
a special section (see below). Diffusion coefficients with an uncertainty of only
a few percent can be obtained with the aid of microtome and lathe sectioning.

Grinding or lapping is the standard method of sectioning brittle materials.
Emery or abrasive SiC papers as well as diamond paste are used for 3-100 um
sections. The section thickness is determined by weighing the sample after each
section that has been removed. Equation (01.04) describes the penetration plot.

Lathe, microtome and grinder sectlomng permit the measurement of
diffusion coefficients larger than 10~'*m?s™" or temperatures higher than about
07Ty (T is melting temperature), grinding with SiC papers diffusion
coefficients as small as 107" m*s™"

c(x,t) =

Residual activity method. ~An alternative method for the determination of D using
grinding was proposed by Gruzin [01.11]. Instead of measuring the activity of the
sections the residual activity of the sample after removing the sections is measured.
Then the activity of the n-th section is the difference of the residual activities after
removing n—1 and n sections. The solution of Eq. (01.02) yields [01.05]

Ay 1
— erfc 4
= e <2 J_> (01.05)

where Ay is the initial counting rate and A, the remaining activity after the removal
of n sections. erfc(z) is the complementary error function

erfc(z) =1 — erf(z)

see Figure 01.02. D can also be derived from the Gaussian plot

2
In(‘;—‘;1 = const — % (01.06)
The plot of the inverse function of erfc(z) = A, /2A,, i.e. erfc_1)(A,/2A0)
against x is linear if the initial and boundary conditions are properly fulfilled
(see Figure 01.02).
The Gruzin method is considered as less precise than the before-mentioned
sectioning techniques. Only if the tracer is a hard y radiator the absorption is
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Fig. 01.01 Impurity diffusion of %Nb in o- and y-iron. Microtome sectioning (2—5 um sections)
(from Ref. [01.10]).
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Fig. 01.02 Impurity diffusion of ®°Co in niobium. Residual-activity measurement. Profile fitted
to Eq. (01.05) (from Ref. [01.12]).
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negligible. Otherwise the linear absorption coefficient of the radiation has to
be measured accurately. The method is mainly used in grinder sectioning
investigations on polycrystalline materials.

Surface activity decrease method. The measurement of the decrease of the
surface activity (or simple absorption method) before and after the diffusion
anneal can also be used for the determination of D [01.13, 01.14]. This method is
based on the surface activity decrease during the anneal which is caused by the
absorption of the radiation of the tracer material diffused into the bulk. As in
the Gruzin technique the absorption coefficient of the radiation has to be known.
The method is regarded as less reliable than the sectioning techniques because
it needs assumptions about the concentration profile. Particularly, errors can
arise from tracer loss, oxide hold-up and short-circuiting contributions (grain
boundary and dislocation contributions).

A variant of the simple absorption method is the Kryukov absorption method
[01.15]. The radioactivity from both front face and back face of a very thin sample
is counted after the diffusion anneal. So, D can be evaluated without the
knowledge of the absorption coefficient.

Autoradiography. Autoradiography has also been used for the measurement
of diffusion coefficients [01.16, 01.17]. The tracer penetration is derived from an
autoradiograph taken from a flat cut at a small angle to the plane where the tracer
was deposited. Although this cannot be considered a highly precise technique,
for Sb diffusion in copper at least at high temperatures good agreement with the
lathe sectioning data was observed [01.18].

Microsectioning techniques

Diffusion coefficients smaller than 10~ m”s ™' can be measured with the aid of
chemical and electrochemical techniques. Sectioning by chemical dissolution
permits the removal of 100nm thick layers [01.19]. Sections between 10 and
100 nm can be obtained by mechanically stripping of electrochemically anodized
layers [01.20]. This enables the measurement of diffusion coefficients as small as
1072 m?s™" at temperatures of about 0.5 T, [01.21]. Lundy and coworkers have
used this method for the investigation of self-diffusion and impurity diffusion in
B-Ti, B-Zr, Nb, Ta and W.

Diffusion coefficients as small as 1072 m”s ™" at T~0.4 Ty, can be obtained by
application of sputtering methods. Sections smaller than 1nm can be removed by
ion bombardment (ion-beam sputtering, IBS). A concentration-depth profile can
be measured by collecting the sputtered-off radiotracer material [01.22, 01.23] or
by selecting and counting the sputtered-off material in a mass spectrometer
(secondary-ion mass spectroscopy, SIMS) [01.24]. The depth of the profile (total
crater depth) is measured by optical interference methods after sectioning has
been completed. The thickness of the sections is determined under the assumption
that the material is removed uniformly as a function of time. To avoid short-
circuiting contributions single crystals with small dislocation densities have to be

1
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Fig. 01.03 Impurity diffusion of ™™In in silver. lon-beam sputtering (from Ref. [01.25]).

used. The depth resolution of the sputter sectioning technique is limited which
results from roughening and atomic mixing [01.24]. Roughening reduces
the depth resolution because atoms are sputtered simultaneously from different
depths with different concentrations of tracers. Mixing of atoms from different
depths is a consequence of the lattice damage caused by the sputter ions.
Roughening increases with depth. The accuracy of diffusion coefficients measured
by means of sputtering techniques is within 10-20%.

In Figures 01.03 and 01.04 the penetration profiles for In diffusion in silver
[01.25] and Ni diffusion in copper [01.24] are shown. For H4mpy in silver Ar* ions
with an energy of about 0.5keV were used for sputtering. The penetration
profiles are ranging from about 100-500 nm (see Figure 01.03). For Ni in copper
single crystalline samples with inserted thin Ni layers are used. The sputter
deposited Ni (monoatomic layer with initial distribution with a half-width of
11 nm) is covered by an epitaxial, almost monocrystalline layer of copper of about
100nm. O3 ions of 4keV were used for sputtering. The penetration plots are
smaller than 100 nm (see Figure 01.04).

IBS plus radiotracer counting permits the measurement of self-diffusion as
well as impurity diffusion coefficients in the temperature range between about
0.4 and 0.6 Ty,. Especially for self-diffusion in fcc metals the low-temperature
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Fig. 01.04 Impurity diffusion of Ni in copper. lon-beam sputtering and SIMS analysis (initial
distribution with a half-width of 11nm) (from Ref. [01.24]).

data detect the slight curvature of the Arrhenius plot of D and enables the
evaluation of D(T) in form of two-exponential fits (see Chapter 0.2). IBS plus
SIMS analysis permits the measurement of impurity diffusion coefficients of
elements which have no suitable radioisotopes.



8 Self-Diffusion and Impurity Diffusion in Pure Metals

Non-Gaussian diffusion profiles
Deviations from linearity of the In ¢ vs. ¥* plot, ie. non-Gaussian profiles,
are observed if the boundary conditions are not properly fulfilled or if other
mechanisms like short-circuiting diffusion overlap the lattice diffusion. Non-
Gaussian profiles are obtained, if

1) Grain boundaries or dislocations contribute to D (this contribution increases
with decreasing temperature and decreasing grain diameter).

2) Oxide layers at the surface hinder the penetration of the tracer atoms.

3) Reduced solubility of impurities changes the boundary conditions.

4) Tracer atoms evaporate from the surface, which also changes the boundary
conditions.

Short-circuiting contributions lead to an upward deviation from the Gaussian
plot at deeper penetrations (see Figure 01.05). Grain-boundary diffusion results in
a proportionality between In ¢ and x*/° [01.27, 01.28]. The short-circuiting con-
tribution can be eliminated mathematically if the penetration plot is fitted to [01.29]

M x?
£ = _x _R.6/5
c(x, t) 2\/7ﬁexp< 4DlL)—l—Aexp( Bx"?) (01.07)
106
] 1018 K, 1064 s
10°

penetration profile

- = -~ lattice diftusion
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Fig. 01.05 Self-diffusion of *°Fe in a-iron. Penetration profile with dislocation tail (from
Ref. [01.26]).



