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INTRODUCTION

The present volume collects the papers which were presented in the
academic year 1979-1980 at the Institute for Advanced Study, in the areas
of closed geodesics and minimal surfaces, as part of the activities of a
special year in differential geometry and differential equations. Starting
with a survey lecture, they have been arranged according to dimension and
approach, from classical to that of geometric measure theory.

We wish to extend our sincere thanks to all contributors, particularly
for their collaboration in sending their texts and their revisions as well as
for their patience in waiting for these notes to appear. Our thanks also to
the National Science Foundation for supporting this special year at the

Institute for Advanced Study.

ENRICO BOMBIERI
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SURVEY LECTURES ON MINIMAL SUBMANIFOLDS

Leon Simon*

Our aim here is to give a general (but necessarily brief) introduction
to the theory of minimal submanifolds, including as many examples as
possible, and including some discussion of the classical problems
(Bernstein’s, Plateau’s) which have provided much of the motivation for
the development of the theory.

>’ in a suffi-

Our first task is to discuss a notion of minimal ‘‘variety
ciently general sense to include the various classes of objects (e.g.
algebraic varieties in C", cones over smooth submanifolds of S",

“‘soap film like’’ minimal surfaces in R3 , branched minimal immersions,
least area integral current representatives of homology classes) which
arise naturally. This will be done in §2, after some classical introductory
discussion of first and second variation in §1. In 83 we present some of
the principal classes of examples of minimal varieties. §4 includes a
discussion of some of the special properties of minimal submanifolds of
R™. In §5 we give a brief survey of the known interior regularity theory,
and in §6 we discuss the classical Bernstein and Plateau problems and

the present state of knowledge concerning them. Finally, in §7, we discuss

some selected applications of second variation of minimal submanifolds in

geometry and topology.

*Research was partially supported by an N.S.F. grant at the Institute for
Advanced Study, Princeton.
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4 LEON SIMON

We would here like to recommend the survey articles [L1], [N1], [01],
[B], which cover topics only touched upon (or not mentioned at all) here.
For other general reading we strongly recommend the works [FH1], [GE1],
[L3], [L4], [N3], [02].

In all that follows, N will denote an n-dimensional Riemannian
manifold without boundary (n >2), and k is an integer with 1 <k<n,.
U will always denote an open subset of N. We also often have occasion
to consider a ‘“‘smooth deformation’’ (i.e. a smooth isotopy) of N which
holds everything outside a compact subset of U fixed. To be specific,
let (~1,1) x N be equipped with the product metric, let ¢:(-1,1)xN >N
bea C? map, let ¢, :N N be defined by B (x) = B(t, x) for (t,x) e
(-1,1) x N, suppose ¢, is a diffeomorphism of each t ¢(-1,1), and

suppose there is a compact K C U such that
(0.1) bo= 1y, ¢t|N~K =ly g, #ECK Vte(-1,1).

X will denote the associated initial velocity tangent vector field on N ,

defined by
_d
(0.2) Xy = . qS(t,x).t:O .

Of course, given an c! vector field on N with compact support in U,
y pa PP

there always exists ¢ as above such that (0.2) holds.

§1. First and second variation

We begin classically, with M denoting an embedded (but not neces-
sarily properly embedded, oriented or complete) k-dimensional submanifold
of N such that the k-dimensional volume }(k(MﬂK)* of MNK is
finite for each compact K CN.

When U is such that }(k(MﬂU) <oo (e.g. if U is compact), we say

that M is stationary (or ““minimal’’) in U if

*Here and subsequently, }(k denotes k-dimensional Hausdorff measure in N.
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@1 &lpmnu),_ = o

for every ¢ as in (0.1). Here [¢p,MNU)| denotes the k-dimensional
volume of the submanifold ¢,(MNU); that is, | MNU)| = He(pMNUY).

M is said to be stable in U if it is stationary in U and if
1.2 2 igmnw)_ >0
' dt2 t t=0 ~

for each ¢, as in (0.1).

We say that M is stationary (respectively stable) in an arbitrary open
set WCN if it is stationary (respectively stable) in U for each open U
with pMNU)< 00 and UCW.

The quantities appearing on the left of (1.1), (1.2) are called the first
and second variation of M with respect to the deformation ¢ . We shall
see that the first variation depends only on the initial velocity vector X
of (0.2), and is otherwise independent of .

We now want to explicitly compute the first and second variation. To

do this, we need the area formula ([FH1, §3.2]), which asserts that

1.3) lpeMNU)| = f Jt, x)dp ,
M

where, for the moment, u= Hk ( k-dimensional Hausdorff measure), and

where J(t,x) denotes the Jacobian of the restriction of ¢y to M. Thus
a.4 J %) = |dyde(r ) Ad By ) A+ Ady ey )]

where d ¢, denotes the linear map TN - T¢t(x)N between tangent

spaces induced by ¢, and where 7{»*** T is any orthonormal basis for
T,M. (TyM is of course equipped with the Riemannian inner product
<, > of T,N.)
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We thus have

$lmno)_ - f 23wl dp
M

and

2 pmny = | Liewl d
gz Tt t=0 P R R

M

and direct computation (using (1.4)) shows (see for example the appendix
of [SL1] for details) that

1.5) %\¢tmn0)1t=o =fdivMX dp
M

k
d2 . . 1
1.6) 0 |¢t(1va)|t=0= f {dez + [divy X)? + 2 |(VTiX) 12

M i=1

k k
-3 <ri,VTjX><rj,VTiX>—2 <R3, X)X, 7> fdp .
i,i=1 i=1

Here X, r;

; are as in (0.2) and (1.4) respectively, Z, =

X

- k

qSt(x)lt:O, xeM, divyX = '21 <ry, VTiX >, V’i denotes covariant differentia-

i=

tion in N with respect to 7;, Yl (for any Y ¢T,N ) denotes the

orthogonal projection of Y onto (TxM)J' , and R denotes the Riemannian

curvature tensor of N, defined by R(X,Y)Z =V, V,Z-V V,Z _V[X,Y]Z .
From (1.5), (1.6) we thus see that M is stationary in U (whether or

not U is compact) if and only if

.7 f divyX dy = 0

M
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for every smooth vector field X on N with compact support in U, and
M is stable in U if and only if (1.7) holds and

k k
(1.8) f {(divMX)?- +2 |(VTiX)l|2— 2 <ri,VTjX><rj,VTiX>

M i=1 i,j=1

- i <R(ri,X)X,ri>}dp >0

i=1

for every such X.

To examine more closely the meaning of these definitions, at each

1

point of M we write X =XT+X*, with Xl denoting the part of X

normal to M. Thus, letting ka, «++,1 be a locally defined orthonormal
n
set of vector fields normal to M, we have Xl = X <% X>u%, and
a=k+1

hence (since <ry, 2> =10),

n
(1.9) dival - 2 <V%, X > divy 12
a=k+1

Now

k k
: a a a
leMV = E <ri,VTiV >=— <%, E B(ri,ri)>,

where B denotes the second fundamental form of M, defined on

T.M x T M and taking values in (TXM)‘L according to
n

1.10) B, m) = - 3 <&EV,1850%, £ eTM

a=k+1

(=B@ &N -

An alternative definition is

110y B&m = (VD!
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where Y is any smooth extension of 7. The trace of B is called the

mean curvature vector H of M; thus

k
(1.11) He) = Y Bey, 1),
i=1
with r; as in (1.4).
It goes without saying (and is easily checked) that all these definitions
are independent of the particular choice of 7,,---, 7y, l/k+1, et

We now have from (1.9), (1.10), and (1.11) that

n
(1.12) divgX! = - 3 <A X>GAH>
a=k+1
= —‘<X,ll>,
and hence

fdivMXdp=fdivMXTdy~f<X,H>dy.
M M

M

To go further, we assume that M is actually compact with smooth boundary
OM (possibly empty); then the classical divergence theorem tells us (since

XT is by definition a tangent vector field on M) that fM divMXT dp =
—fa <X,n> dik-1 , where 7 denotes the co-normal of M. Thus 7% is
M

tangent to M, normal to oM, and points into M. Putting these facts

together, we thus have
(1.13) fdiva dp = - f <X,n>dHk1 f <X,H>dy,
oM M

and we see that (in case M is smooth, compact) that M is stationary in
U if and only if
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(1.14) MNU=@F and H=0 on MNU.

This is of coutse a well-known classical characterization of stationary
submanifolds. It also explains why the word ‘“minimal’’ is used in the

classical setting; one can in fact check that the following lemma holds.

LEMMA 1.1. Suppose M is smooth, compact, and £ ¢eM ~ M. Then
H =0 in a neighborhood of £ implies that there is a (small) open U

containing £ such that
1.15) MNU} < |pMNU)|
for all sufficiently small t, whenever ¢ is as in (0.1).

We emphasize that this is in general false if M is allowed to have
singularities. (In §2 below we shall allow M to have singularities.)

For a brief sketch of the proof of (1.15), we first suppose that N is
represented (locally, near &, via a coordinate chart) as a submanifold of
R" in such a way that the point & corresponds to 0 ¢ R®. Then,
selecting suitable coordinate axes in R"™ and supposing that U has

been chosen sufficiently small, we can write

(1.16) lpMNUY| = f F(x,u,, Du)dx ,
Q

for all sufficiently small t. Here QC RK ) Uy = (u{‘*l, e, u{l) .Q - Rk
is such that Duy(0) =0 and such that graph u, represents ¢, MNU),
and F(x,z,p) is the ‘“non-parametric k-dimensional area integrand”’

associated with our local coordinate representation of N. F(x,z,p) is a

C? function of x ¢, z = (zk‘”, v,z € Rnhk, and
p= (p(il)a=k+1 veen € ka_k), and it satisfies the uniform convexity
i=1,-+,k

condition
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k n
wn 33 ap—j;f—ﬁ(xzp)cfafﬁmz NG

i,j=1" a,B=k+1 i i=1 a=k+1

for |p|, |z| sufficiently small. (In the codimension 1 case, when
n~-k=1, F(x,z,p) is in fact convex in p forall p, but this is not so
in case n-k>2.)

Now, by virtue of the fact that % l¢,MNU)|,_o=0, we have the
identity

pMNU)| - Mnul - 1 4 (F B MN D)}, _g

for some 6 between 0 and t. Direct computation now shows that
2

4a- |, MNU)| >0 for sufficiently small t (provided U has originally
2 't

been chosen small enough). (In checking this we use differentiation
under the integral in (1.16); one needs to use the convexity (1.17) and
also the Poincar€ inequality fQ Y2 < c(diam Q)2 fQ Dy|2, ¢ e Cé(ﬂ) D)

In case M is smooth, compact, stationary in U, and M NU = g,
we can obtain a somewhat more compact expression for the second varia-
tion of M. Indeed if I(X) represents the expression on the right of (1.6)
(with first term deleted by virtue of the fact that M is stationary in U ),
then

118 IX)= I(E (v, xl 12 2 <X, By 7j)>?

i,j=1
k
-3 <R(;, x1xt,r>) dp.
i=1
In checking this we first show that I(X) = I(Xl) and then use the fact
n
that <7 'V, x >= X <rj,VT 1A><X, 12> = - <B(ri,rj),X> (% B

a=k+1 i

as in (1.9), (1.10) above). For further details concerning this computation,
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see for example [SL1]. In the codimension 1 oriented case, we can write
X =/{v, where v is a smooth unit normal and ¢ is a scalar function,

and the expression for I(X) becomes
k
1.19)  IX) =f {1V¢|2 _¢? (|13[2 +Y <RGy W, ri>)} dp
M i=1

where V¢ denotes the gradient (taken in M) of the scalar function ¢.
k

Notice that 2 <R(rj,v)v,7;> is just Ric(v,v), where Ric is the
i=1

Ricci curvature of N.

We should finally mention the meaning of the terms ‘‘stationary in U ”’
and ‘“‘stable in U ’’ in case M is immersed rather than embedded. To do
this we can suppose that M, is any compact k-dimensional Riemannian
manifold (with or without boundary) and let ¢:M, >N be a smooth map
(not necessarily an immersion), and let J(i/) be the Jacobian of .

That is, J@W)®) = A @¥)ll, where d ¢y denotes the linear map
LM, -~ Tx/l(x)N induced by . The area associated with sucha ¢ is

of course defined by

1.20) AW) = f JydHk |

Mo
By a variationof ¢ in U, (U, openin M, ) we mean a 1l-parameter
family {I/Jt}te(_l'l) of smooth maps of M, into N, smoothly varying in

t, such that = ¢ and such that, for some fixed compact KC Uy

Yy (x) = (x) whenever x ¢eM, ~ K and lt| <1. Then ¢ is said to be
. . o d e

stationary in U, if I A(v,[;t)|t=0 = 0 for every such variation of ¢, and

i/ is said to be stable in U, if it is stationary in U, and if

d2 L es : _ Jd
pw A(z//t)\tzo > 0 for every such variation. If we define X.f -5 z/;t(g)ﬁtzo

(so that X is defined on M, but takes values in TN ) then one can
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derive expressions for first and second variations (i.e. for c% A(lﬁt)[t_o
2
and d—2 A(gbt)]t_o ) which are the same as the right sides of (1.5), 1.6),
dt .

but in which the various quantities must now be appropriately interpreted.
(Near points Xg €M,, where ](l,b)(xo) #0, ¢ embeds a small neighbor-
hood W of Xq into N and one computes the formulae for first and
second variation by computing the t-derivatives of the relevant Jacobian
as before. On the other hand, the points where J(l,//)(xo) =0 of course
contribute nothing to the formulae.) Of course from the previous discus-
sion, it follows that if UgN oMy =@, then ¢ is stationary in U, if
and only if ¢ locally embeds M, as a zero mean curvature submanifold

near points where J(@) # 0.

§2. k-varifolds, k-currents

An examination of the discussion in §1 will show that the formulae
(1.5), (1.6) (and their derivations) remain valid even in the presence of
serious singularities in M. To make this statement precise, we first
need to introduce some terminology.

We henceforth let M be a countably k-rectifiable Borel set in N.
o
That is, M is Borel, MC U Mj, where Mj are (open) k-dimensional
j=1

C! submanifolds of N (Mj not necessarily complete nor pairwise
disjoint). *)

We also allow the introduction of a multiplicity function of M,
specifically, we let u be the measure on N defined by dp= 6k ,
where § is a non-negative locally }(k-summable function (called the
multiplicity function) on N. (We take 6 to be defined onall on N,
rather than just on M, for reasons of purely technical convenience; we

of course often have =0 on N ~ M.)

(*)Modulo sets of Hk~measure zero, this is equivalent to the requirement that
M is contained in a countable union of images, under Lipschitz maps, of compact
subsets of Rk. (By [FHI, 3.1.16].)



