O
)

'U DIGITAL SIGNAL AND IMAGE PROCESSING SERIES

>
i
=
5
70}
=
]
-
e}
©
o
>
=
=]
O
b~
=]
(11}




Optimization in Signal
and Image Processing

Edited by
Patrick Siarry

= %)WILEY



First published in France in 2007 by Hermes Science/Lavoisier entitled Optimisation en traitement du
signal et de 'image © LAVOISIER, 2007
First published in Great Britain and the United States in 2009 by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA.
Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW 19 4EU Hoboken, NJ 07030

UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd, 2009

The rights of Patrick Siarry to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

Optimisation en traitement du signal et de I'image. English.

Optimization in signal and image processing / edited by Patrick Siarry.

p.cm.

Includes bibliographical references and index.

ISBN 978-1-84821-044-8

1. Signal processing. 2. Image processing. 1. Siarry, Patrick. II. Title.

TK5102.9.06813 2009

621.382'2--dc22

2009017635

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN: 978-1-84821-044-8

Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne.

J : 2 @
Mixed Sources
Product group from well-manay
forests and other controlled sources

Cert no. SGS-COC-2953

wwwfscorg
©1996 Forest Stewardship Council



Optimization in Signal and Image Processing



Introduction

Engineers constantly encounter technological problems which are becoming
increasingly complex. These problems may be encountered in different domains
such as transport, telecommunications, genomics, technology for the healthcare
sector and electronics. The given problem can often be expressed as one which
could be solved by optimization. Within this process of optimization, one or several
“objective functions” are defined. The aim of this process is to minimize the
“objective function” in relation to all parameters concerned. Apart from problems of
optimization, i.e. the problem’s objective function which is part of this topic (e.g.
improving the shape of a ship, reducing polluting emissions, obtaining a maximum
profit), a large number of other situations of indirect optimization can be
encountered (e.g. identification of a model or the learning process of a new
cognitive system). When looking at this issue from the angle of available methods
used to resolve a given problem, a large variety of methods can be considered. On
the one hand, there are “classic methods™ that rely purely on mathematics, but
impose strict application conditions. On the other hand, digital methods that could
be referred to as “heuristic” do not try to find an ideal solution but try to obtain a
solution in a given time available for the calculation. Part of the latter group of
methods is “metaheuristics”, which emerged in the 1980s. Metaheuristics has many
similarities with physics, biology or even ethology. “Metaheuristics” can be applied
to a large variety of problems. Success can, however, not be guaranteed. The domain
of optimization is also very interesting when it comes to its functions within the field
of application. In the domain of optimization, the processing of signals and images
is especially varied, which is due to its large number of different applications as well
as the fact that it gave rise to specific theoretical approaches such as the Markov
fields, to name just one example.

These ideas have influenced the title of this book Optimization in Signal and
Image Processing. This book has been written for researchers, university lecturers
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and engineers working at research laboratories, universities or in the private sector.
This book is also destined to be used in the education and training of PhD students
as well as postgraduate and undergraduate students studying signal processing,
applied mathematics and computer science. It studies some theoretical tools that are
used in this field: artificial evolution and the Parisian approach, wavelets and
fractals, information criteria, learning and quadratic programming, Bayesian
formalism, probabilistic modeling, the Markovian approach, hidden Markov models
and metaheuristics (genetic algorithms, ant colony algorithms, cross-entropy,
particle swarm optimization, estimation of distribution algorithms (EDA) and
artificial immune systems). Theoretical approaches are illustrated by varied
applications that are relevant to signals or images. Some examples include: analysis
of 3D scenarios in robotics, detection of different aggregates in mammographic
images, processing of hand-written numbers, tuning of sensors used in surveillance
or exploration, underwater acoustic imagery, face recognition systems, detection of
traffic signs, image registration of retinal angiography, estimation of physiological
signals and tuning cochlear implants.

Because of the wide variety of different subjects, as well as their
interdependence, it is impossible to structure this book — which contains 13 chapters
— into distinct divisions, which might, for example, separate traditional methods and
metaheuristics, or create a distinction between methods dealing with signals or with
imagery. However, it is possible to split these chapters into three main groups:

— the first group (Chapters 1 to 5) illustrates several general optimization tools
related to signals and images;

— the second group (Chapters 6 to 10) consists of probabilistic, Markovian or
Bayesian approaches;

— the third group (Chapters 11 to 13) describes applications that are relevant for
engineering in the healthcare sector, which are dealt with here through the use of
metaheuristics.

Chapter 1 deals with the benefits of modelization and optimization in the
analysis of images. After the introduction of modelization techniques for complex
scenes, the analysis of images has become much more accurate. In particular,
traditional means of image analysis, such as the segmentation of an image, need to
be revised. Jean Louchet creates a link between two domains that have been
developing independently. These are the synthesis and the analysis of images. The
synthesis of images relies on a wide range of different modelization techniques
which are based on geometrics, depiction and movement. The author shows that
some of these techniques can also be used for the analysis of images, which would
broaden the possible applications of these techniques. Jean Louchet also shows how
artificial evolution can lead to a better exploitation of models, create new methods of
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analysis and push back the limits of Hough transform using a stochastical
exploration of the model’s parameter space.

In Chapter 2 Pierre Collet and Jean Louchet present the so-called “Parisian”
approach of evolutionary algorithms and how these algorithms are used in
applications when processing signals and images. Evolutionary algorithms are
reputed to take a long time to perform calculations. The authors, however, show that
it is possible to improve the performance of these algorithms by — if possible —
splitting the problem into smaller sub-problems. When using the “Parisian”
approach to analyze a scene, the objects which have been modified by genetic
operators are not the vectors of the parameters that determine a complete model of
an image. These objects are elementary entities which only make sense when
merged together as a representative model of the scene that will be studied. In other
words, a problem cannot be represented by a single individual but by several
individuals, or even the entire population. The “Parisian” approach is successfully
used in the field of robotics when analyzing 3D scenes via stereovision. The so-
called “Fly algorithm” allows for the detection of obstacles in real time and much
more quickly than when using traditional approaches. Other visual applications
based on models can be processed by evolutionary methods. Here, the authors
discuss the identification of models of mechanical systems based on sequences of
images.

Chapter 3 deals with the use of wavelets and fractals when analyzing signals or
images. The application of these techniques is becoming increasingly frequent in
natural science as well as in the study and research carried out in the scientific fields
of engineering and economics. Abdeljalil Ouahabi and Djedjiga Ait Aouit show that
multifractal analysis and the exploitation of techniques of multiresolution based on
the concept of wavelets lead to a local as well as global description of the signal’s
singularities. On a local level, the criterion of punctual regularity (rugosity) based on
Hélder’s inequality can be characterized by the decrease of the wavelets’
coefficients of the analyzed signal. On a global level, the distribution of a signal’s
singularities can be estimated by global measures when using the auto-similarity of
multifractals. In other words, the spectrum of singularities is obtained when
localizating the maxima of the module of the wavelet transform of a signal. The
authors give two examples of the aims and applications of this formalism. One
example in the healthcare sector is a multifractal analysis which allows for the
detection of different aggregates in mammographic images. The second example is
fracture mechanics. In this field the formalism described above is used to study the
resistance of materials.

Chapter 4 deals with the information criteria and their applications when
processing signals and images. Here, the model of a random signal should be
optimized. An information criterion is a description or formulation of an objective
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function that should be minimized. The information criteria are an improvement on
the traditional technique of the maximum likelihood. This improvement is due to the
focus being shifted towards simultaneous research on the optimal number of free
parameters in the model as well as the ideal values for these parameters. Christian
Olivier and Olivier Alata first give a general overview of the main information
criteria as well as the relevant literature. The majority of the criteria were introduced
for research using 1D auto-regressive (1D AR) models. In Chapter 4, this case is
illustrated by an application that involves the segmentation of natural images. The
information criteria were then transferred to the 2D AR model. Two applications
resulted from this. These are the modelization of the image’s texture and the
unsupervised segmentation of textured images. The authors then look at the
extension of the information criteria to other models based on parameters. These are
a mix of Gauss’s laws n-D, which are here applied to unsupervised classification as
well as Markov’s modes. Last but not least, this chapter deals with the application of
information criteria in the case of non-parametrical problems, such as the estimation
of distribution via histograms or the search for antiderivatives that carry a maximum
amount of information depending on the form of the information. The information
criteria finally offer a means to justify the choice of parameters which are linked to a
large number of problems when processing signals or images. The information
criterion deals with a high number of cbservations. This is why the time required to
carry out the calculation might be high (particularly in an unsupervised context).
Dynamic algorithms, however, are able to reduce the number of operations that need
to be carried out.

Chapter 5, written by Gaélle Loosli and Stéphane Canu, deals with an aspect of
optimization that can currently be encountered within signals and images, for
example in shape recognition, i.e. learning processes. More precisely, the chapter
focuses on the formulation of learning as a problem in convex quadratic
programmation on a large scale (several million variables and constraints). This
formulation was obtained by the “nucleus methods”, which emerged about a decade
after neural networks. Its main aim is linked to the fact that the solution in question
is often “parsimonious”, i.e more than 99% of all unknown variables are zero. Using
this specific feature enables learning algorithms to solve large scale quadratic
programming problems within a reasonable amount of time. The best-performing
methods, known as “active constraints”, work “off-line”. In other words, they are
able to determine the exact solution of a given problem if they are provided with all
the data that is used in the learning process. To carry out an “online” learning
process, a method of iterative stochastic optimization is used, which allows us to
obtain an approximate solution. This ehapter describes one of the methods which is
part of the “support vector machine” (SVM) type. The efficiency of this technique is
illustrated by results of experiments which focused on the problem of recognizing
handwritten numbers.
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Chapter 6 deals with the problem of planning within time and space the use of
sensors with the aim of optimizing the exploration and surveillance of a specific
zone; given the rather low number of available sensors as well as their capacity, this
zone is large. Due to the problem being rather extensive, exact methods cannot be
used. An approximate solution can, however, be obtained with the help of
metaheuristics. In this case, Frédéric Dambreville, Francis Celeste and Cécile
Simonin, the authors of this chapter, recommend the use of “cross-entropy”. This
method was initially created to evaluate the probability of rare events and has been
adapted to “difficult optimization” problems (many local minima need to be
considered). The solution is obtained with the help of a probability law that
continually approaches the global optimum. This method is applied to the problem
of planning sensors via a priori modeling mainly under the form of different groups
of probability laws, of possible planning policies. In this chapter, three examples are
explained in detail. The first example looks at how to ideally array search units in
the context of military operations. The aim is to maximize the probability of locating
the target which does not move but is hidden. In the second example, cross-entropy
is used for an exploratory mission. The movement of the vehicle needs to be planned
based on maps that show the environment. The third example is the problem of
optimal control in an environment where only certain parts of the environment can
be observed. Cross-entropy is particularly useful when dealing with data that are
very difficult to formalize. Optimization via cross-entropy therefore means to
“learn” an optimal strategy.

The topic of Chapter 7 is linked to that of the previous chapter. Chapter 7 deals
with a surveillance system such as a maritime patrol aircraft that needs to locate a
moving target. In order to do this, all resources, i.e. passive as well as active sensors
(e.g. a radar), need to be used. Passive measures do not involve any cost. However,
they only determine the direction of the target. Active measures provide much more
information since they can evaluate the distance to the target. These measures,
however, need to be used sparsely because of their cost (emitting a wave) and with
discretion. The author of this chapter, Jean-Pierre Le Cadre, gives a general outline
of the problem of optimal and temporal repartition when using active measures. He
futhermore describes the general mathematical tools (e.g. multilinear algebra) that
allow for the analysis of this problem. The study focuses on the explicit calculation
of objective functions while expressing the quality of the estimation (or tracking) of
the trajectory’s location by using non-linear observations of state. First of all, this
chapter examines the case of targets that contain a determined trajectory. Their
movement is rectilinear and uniform, or in other words the target is “maneuvering”.
When dealing with certain types of approximations, the problem of convex
optimization comes into play. This problem can easily be resolved. The author also
looks at the stochastic evaluation of this case. He shows that it is possible to directly
calculate the objective function of a target of Markovian trajectory without having to
use simulations.
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Chapter 8 deals with segmentation methods of images which exploit both the
Markovian modeling of images and the Bayesian formalism. For every image under
observation there is an infinite number of combinations of objects that can be
associated with it. These combinations of objects represent, or in other words create
,the image. To reduce the number of possible solutions that should be integrated in
the stage of segmentation, prior local or global knowledge is required. The aim of
Markovian modeling lies precisely in its capacity to locally describe global
properties. Due to the equivalence between Markov’s field and Gibbs’s distribution,
the optimal segmentation can be obtained by the minimization of a function linked
to energy. Christophe Collet, the author of this chapter, applies this formalism to the
context of underwater acoustic imagery. To detect small objects on the seabed, the
author exploits images that have been taken by a lateral multibeam sonar. The
images that were obtained were distorted by noise. A segmentation of good quality
therefore requires the nature of noise to be taken into consideration during the
process of image modeling. This chapter shows different examples of application.
These are the segmentation of sonar images into two different groups (shadow,
reflections of the seabed) or segmentation into three different groups (shadow,
seabed and echo). Due to the third group, echo, physics, which forms the basis of the
creation of sonar images, is also taken into consideration. Two other examples are
the differentiation between manufactured and natural objects, as well as the
subdivision of the seabed into different regions (sand, mid-ocean ridges, dunes,
stones and rocks). All tasks linked to detection and classification are first of all
united in the fact that the function of energy, which integrates the prior knowledge
required to obtain a solution, needs to be minimized. The technique used for this
optimization is a deterministic method or a genetic algorithm, depending on whether
an initial good quality solution is available or not.

Chapter 9 was written by Sébastien Aupetit, Nicolas Monmarché and Mohamed
Slimane and describes the use of hidden Markov models (HMM) for the recognition
of images. Hidden Markov models are statistical tools which allow for the
modelization of stochastic phenomena. This type of phenomenon may, for example,
consist of several sequences of images. Images of the same sequence are taken from
different angles but show the same scene, e.g. a person’s face. After a learning
phase, HMM is prepared for the process of recognition. During this learning phase
several sequences of images, let us say four sequences of four photographs each
showing the faces of four different people are processed. When confronted with a
new photograph of a face, HMM is able to distinguish which person is shown in the
picture from the four previous pictures. At the same time, the risk of HMM making
a mistake is minimized. More precisely, a discrete HMM corresponds to the
modeling of two stochastic processes. The first process is hidden and perfectly
modeled by a discrete Markov chain while the second observed process is dependent
on the state of the first process, i.e. the hidden process. This chapter focuses on
learning processes, a crucial aspect of HMM. It provides an overview of the main
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criteria of existing learning processes and the possible solutions for HMM learning
processes. Furthermore, the principles of three metaheuristics inspired by biology
and population-based are also addressed by the authors and analyzed in light of
HMM learning processes. These three metaheuristics are a genetic algorithm, ant
colony algorithm and particle swarm optimization (PSO). Several versions of these
types of metaheuristics (which are different to one another because of the
mechanisms which are implemented, or simply due to the settings of the respective
methods) are examined and tested in great detail. These tests are carried out on a set
of test images as well as samples of literature. The chapter emphasizes the fact that
results can be improved if metaheuristics used for learning processes are combined
with a method dedicated to local optimization.

In Chapter 10 Guillaume Dutilleux and Pierre Charbonnier use different
metaheuristics inspired by biology for the automatic detection of traffic signs. The
aim is to make an inventory of road signs currently used in the French secondary
road network. The data used are images that have been collected by vehicles
inspecting the roads that are part of the respective network. The application does not
face any real time constraint. However, the application needs to be robust when
faced with changes in the conditions under which the images are collected. Problems
might occur due to differences in light, backlighting, worn out or partially hidden
traffic signs. The method that has been proven to be successful includes the
technique of “deformable models”. This technique consists of a mathematical
model, a prototype of which the object research is carried out upon. This model’s
shape can be manipulated and changed to such an extent that it is adapted to the
respective image that should be analyzed. The quality of this adjustment and to what
extent manipulation can be accepted are, in the case of Bayesian formalism,
respectively measured by a likelihood and an a priori. The problem of localizing an
object therefore comes down to the problem of optimization in the sense of a
maximum a posteriori. The residual value of a minimized objective function gives
an indication of the effective presence of the object in the scene which is to be
analyzed. In practice, the presence of numerous local minima justifies the use of
metaheuristics. The authors have carried out experiments with three different
techniques in the field of metaheuristics. These are an evolutionary strategy, PSO
and a method of clone selection (the latter is relevant to a more general field of
“artificial immune systems”). The performance of automatic detection is compared
to a number of different algorithms when dealing with a sequence of traffic signs.
(For these test images the real data had already been obtained manually.)

The majority of metaheuristics were initially created for the processing of
problems that arise when dealing with discrete optimization. Chapter 11, written by
Johann Dréo, Jean-Claude Nunes and Patrick Siarry, looks at their adaptation to
applications with continuous variables, which are encountered frequently, especially
in the field of signals and images. The techniques suggested in the literature for this
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adaptation are linked to each specific form of metaheuristics. These techniques
cannot be generalized, i.e. it is not possible to apply these techniques to another
application. Furthermore, no metaheuristic, whether it is continuous or discrete, is
the ideal technique, i.e. most efficient, for all possible sorts of problems. This is why
hybrid methods, which combine different forms of metaheuristics or metaheuristics
with downhill simplex techniques, often need to be used. This chapter describes two
“continuous metaheuristics”. These are an ant colony algorithm and EDA.
Furthermore, a local technique, which is frequently used in continuous cases to
refine the search within a “promising valley” of solutions, is Nelder and Mead’s
downhill simplex method. These methods are used for image registration in the field
of retinal angiography. Before a doctor can actually interpret a sequence of images,
the problem of inevitable eye movement during the procedure needs to be dealt with.
In the example given in this chapter, image registration is carried out by using only
translatory motions between different images. Metaheuristics were found to be
particularly appropriate for image registration in angiography with a high resolution.
The time required for calculations only increases a little when increasing the
resolution of images.

Chapter 12, written by Amine Nait-Ali and Patrick Siarry, describes the
introduction of a genetic algorithm used for the estimation of physiological signals,
the Brainstem Auditory Evoked Potentials (BAEP). BAEP is an electric signal
which is generated by the auditory system as a response to acoustic stimulation.
Studying this signal allows for the detection of pathologies such as acoustic
neuroma. Measuring BAEP is, however, a problem as this signal is of a very low
energy and covered by electric noise that stems from spontaneous electric activity of
the cerebral cortex (these signals can be measured using electroencephalograms
(EEG)). To identify a patient’s effective BAEP, several hundred signals need to be
exploited. These signals are obtained as a result of acoustic stimulation. They also
have to be synchronized before being simply added to one another in order to
eliminate the noise. The synchronization process is expressed in the form of an
optimization problem in which unknown variables are the random delays of
different signals. Here, the problem is solved with the help of a genetic algorithm.
The authors show that a significant acceleration of this technique can be obtained
when creating a model for the variation law of these delays. This can, for example,
be performed using a set of sinusoids.

Chapter 13, written by Pierre Collet, Pierrick Legrand, Claire Bourgeois-
République, Vincent Péan and Bruno Frachet, presents an evolutionary algorithm
that allows for the adjustment of parameters for a cochlear implant. This adjustment
is carried out in interaction with the patient using the device. This type of implant
enables deaf people, whose cochlear plate is still intact, to hear. The device works as
follows: a group of electrodes is implanted into the patient’s cochlear plate. These
electrodes stimulate the auditory nerve. The electrodes are connected to a digital
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signal processor (DSP) that receives the sound as signals through a microphone
situated next to the patient’s ear. The parameters of DSP need to be adjusted in a
way that reconstructs the patient’s auditory ability to a point that he/she might even
be able to understand spoken language. Adjusting these parameters is usually
undertaken by a human and becomes increasingly complicated as technology
progresses. A current implant consists of 20 electrodes and several hundred
parameters. The effort for adjusting these parameters is dependent on the patient’s
ability to understand spoken language. This is why this study looks at the
performance of an interactive evolutionary algorithm which should take over the
task of adjusting the parameters of a cochlear implant. There are a large number of
difficulties that lie within this application. These are the subjective evaluation of
every single patient, the quality of every single solution produced by the algorithm,
the necessity of a rapid convergence of the algorithm in order to strictly limit the
amount of solutions to be evaluated by the patient (as every evaluation takes a few
minutes) as well as the fact that the search space is very broad. This chapter presents
experiments undertaken by the authors with the help of a small number of patients
following a methodical protocol. The first results are promising. They show the
disadvantages of manual adjustment in cochlear implants which is increasing
because the number of available electrodes is currently increasing.
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