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INTRODUCTION

In 1948 Feynman showed that quantum field theory is equivalent to in{.
‘tegration. In the more than 40 years since, particle theorists have occupied
themselves with various ways to evaluate his sums over paths.

For most of this time the primary approach has been to consider only
small perturbations about the free field theory limit, where the integrals be-
come Gaussian. In the last decade, however, there has been an explosion of
attempts to attack these integrals more directly, using the vast increases in
raw computational power becoming available. These efforts are quite ambi-
tious; indeed, they are attempts at first principle calculations for interacting
relativistic quantum field theories.

Since the starting point is an infinite-dimensional integral, approximations
are necessary to put it on the computer. The usual approach is to replace
the space-time continuum by a discrete lattice in a finite volume. In this way
the integrals at least become finite-dimensional, although still generally rather
large.

When one is dealing with analyti¢ calculations in the continuum theory, it is
particularly difficult to be rigorous. This often allows meaningless calculations
involving poorly defined quantities. On the lattice, if one tries to evaluate
an undefined number, then the computer quickly complains. This forces an
unusual honesty on the lattice gauge theorist.

Of course, one must still ask if the lattice model has anything to do with
the continuum world of observation. If one can show that the continuum limit
of a lattice theory exists, one might just as well use that as a definition of the
continuum theory. If another definition of the continuum model makes sense
but is different from the limit of the lattice form, then one must wonder if
there is any uniqueness at all 1o the theory. Indeed, it appears a miracle that
in’ four dimensions only a small class of theories appears to have a reasonable
chance of surviving a continuum limit. In more dimensions none are known,
“while in less a much wider class of renormalizable theories is possibie.

In perturbation theory, one quickly encounters the well-known divergences
aeqfiiting renormalization. The various couplings and masses in the bare
“Lagrangian are not physical quantities, so predictions for cross sections ete.
should be re-expressed in terms of observables, such as the long range electro- -
magnetic force in quantum electrodynamics. These renormalization issues are
not unique to perturbation theory, and appear as well in the lattice technique.
The language here, however, sometimes appears quite different than in the
continuum approach. In a perturbative discussion, it is usual to think of the
bare coupling as a parameter which must be adjusted, or renormalized, as the
cutoff controlling ultraviolet divergences is removed. Thus the bare coupling is
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a function of the cutoff. On the lattice, however, we often think of the lattice
spacing, or cutoff, as a function of the bare coupling. To take a continuum
limit one adjusts the bare coupling to make the lattice spacing small. Owing
to asymptotic freedom, for the strong interactions this requires taking the bare
coupling to zero.

The purpose of this book is to review the main results of numerical lattice
gauge theory. From the initial studies relevant to the confinement problem,
lattice calculations have grown into an industry involving hundreds of physi-
cists and tackling a wide spectrum of problems. For a single author to do a
thorough job reviewing this diversity would be near-impossible. Instead, we
have divided the task and thus hope to have each of the subtopics treated in
a reasonably complete manner. .

The book consciously focuses on the computational aspects of the problem.
While analytic approaches are also crucial to the subject, the results have so
far been more limited. We have not attempted a thorough introduction to the
basic foundations of lattice field theory. For this there are several reviews in
the literature as well as my previous monograph, Quarks, Gluons, and Latlices
(Cambridge University Press, 1983).

We assume that the reader is at least vaguely familiar with the general
formulation of lattice gauge theory, wherein there is a system of group variables
Ui,; defined on the links {7, j} of a four-dimensional hypercubic lattice. For the
strong interactions, these elements are from the group SU(3), and we usually
have them interact via the standard Wilson action,

S=-Y ReTrl,. (1.1)
: ,

Here U/, is the product of link variables around the elementary square, or
plaquette, p, and the sum is over all such plaquettes. The Feynman path
integral is then given by

7 = /(dcl)e—“(”) . (1.2)

Here the coupling constant dependence has been parametrized by the variable
B. This is related to the more conventional perturbative coupling by

6
B=— (L.3)
9’
where the subscript 0 on the coupling is to emphasize that this is the bare
coupling, which must be renormalized in the continuum limit.
Note that these definitions emphasize an analogy with statistical mechanics.

Solving the four-dimensional space-time field theory is equivalent to evaluating

1
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the thermodynamics of a four-dimensional classical system with Hamiltonian
given by the action. As in condensed matter physics, it is not Z itself which is
of primary interest, but the correlations between observables in the equilibrium
ensemble. Correlation lengths are the inverse masses of physical particles, and
coupling constants come from correlations between multiple fields.

Just as with the continuumn formulation, the lattice action carries an invari-
ance under gauge transformations. The Wilson approach has the remarkable
property that this invariance remains an exact local syminetry. Indeed, if we
introduce an arbitrary group element g, associated with every site on our lat-
tice, the action (1.1) is unchanged if we replace U;j with gil/,-jgj_l. Thus all
1ssues related to gauge fixing can be discussed on the lattice as well as in the
continuum. Indeed, this is necessary for a perturbative treatment. Neverthe-
less, Wilson’s compact formulation makes the theory well defined even without
a gauge choice.

From perturbative analysis we obtain some rather remarkable information
on the continuurn limit of the lattice theory. Indeed, the phenomenon of asymp-
totic freedom tells us that the coupling defined at increasingly shorter distances
goes to zero logarithmically with the scale. As the bare coupling is an effective
coupling at the scale of the lattice cutofl, it must be taken to zero as the lat-
tice spacing is réduced. In this process we have the remarkable phenonienon
of dimensional transmutation, wherein the dimensionless coupling constant is
replaced by the scale of this logarithmic behavior. In the end, the pure gauge
theory contains no dimensionless couplings, and all mass ratios should be de-
termined. This is one of the main goals of lattice calculations: to determine
the properties of the physical hadrons from fundamental principles and with
no adjustable parameters beyond the quark masses.

We begin the book with two chapters on some of the primary physical
results of these efforts. First T. DeGrand reviews the status of calculating
hadronic masses. This in some sense represents the particle physicist’s most
fundamental desire: to predict the observed spectrum of nature. The second
chapter turns to some experimental predictions that have not yet been veri-
fied. Here R. Gavai treats the behavior of hadronic matter at finite physical
temperatures, and the predicted transition to a quark-gluon plasma. Indeed,
1t is the lattice approach which has given the best estimates of the temperature
and properties of this transition.

The next two chapters push lattice methods beyond the gauge theory of the
strong interactions. A particularly important topic for the near future is the
Higgs boson, the study of which is a primary goal for the SSC. Lattice methods
have been applied here, and given rather stringent nonperturbative bounds on
the possible masses for this as-yet-undiscovered particle. This is the topic of
the chiapter by A. Hasenfratz. Extending these ideas to include the fermionic
contributions to the standard model of weak interactions, R. Shrock then re-
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views chiral and Yukawa models. This represents an area where the lattic
formulation is not yet fully understood; in particular there are fundamenta
difficulties in formulating a theory with fermions interacting in a chiral man
ner. Nevertheless, such work is essential for understanding weak interactior
phenomenology on a nonperturbative level.

We then turn to two chapters on the basic numerical algorithms being usec
for lattice calculations. A. Sokal provides a detailed discussion on the basi
Monte Carlo methods for lattice simulations, concentrating on bosonic fields
He points out the advantages and pitfalls in the various schemes, and cover:
recent develpments in overcoming computational limitations as the continuun
limit is approached. I then present a discussion on the modifications of thes
methods developed to study quark fields. Here the anticommuting nature o
the fundamental objects creates severe new difficulties, and probably the bes
approach is yet to be found.

For us to have confidence in any predictions for quantum field theory, the
results must behave in a well-understood manner as one removes the cutoff. A-
the core of these analyses lies the renormalization group. Indeed, the verifica
tion of the appropriate scaling behaviors is an essential step towards confidenc:
and future improvements in the basic lattice approach. These ideas form th:
basis of R. Gupta’s chapter.

In the final chapter, C. Bernard and A. Soni review the use of lattic:
approaches to calculate the previously unknown hadronic corrections to weal
interaction processes. This is a crucial step in our ability to comprehend the
underlying fundamental weak forces. Indeed, these and related calculation:
represent the current dominant use of lattice gauge methods to describe rea
phenomena in particle physics.

We have enjoyed putting this book together, and hope it will be useful ir
clarifying what is known and pointing out directions for new research. Lattice
field theory is a large subject, and necessarily some topics have been left out
We have tried to be reasonably up to date, but in any rapidly evolving fielc
the true excitement lies in unanticipated new developments.

Michael Creut.
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TECHNIQUES AND RESULTS FOR
LATTICE QCD SPECTROSCOPY

T. DeGrand

Department of Physics
University of Colorado
Boulder, Colorado 80309

ABSTRACT: This article describes how t compute the masses of hadrons
in lattice simulations of QCD. I discuss the most important theoretical and
calculational techniques for finding the masses of mesons, baryouns, and glue-
balls. Part of this discussion is pedagogic and is intended for use by newcom-
ers to this field. A second section describes some interesting open problems

in spectroscopy: wave functions, resonances, orbitally excited states. I re-

view recent developments in this subject (thrc;ugh Autumn 1991).



I. INTRODUCTION

This chapter of the book discusses how to compute the masses of the ordinary
elementary particles in lattice simulation of Quantum Chromodynamics. (Most
of the techniques which I discuss can be applied to other models in particle and
condensed matter physics.) This is a problem of great current interest to th: lattice
gauge community as shown by the many large computer simulations devoted in
whole or in part to the calculation of spectroscopy.

There are several reasons why this problem is important. First of all, we think
QCD is the theory of the strong interactions. We cannot have confidence in our
ability to compute in QCD if we cannot use it to calculate at least the low lying
spectrum of the theory. We also wish to calculate hadronic matrix elements, either
for their own sake or as ingredients to calculations which go beyond the strong
interactions— perhaps to constrain parameters of the Standard Model. A necessary
(but not sufficient) condition for trusting lattice calculations of matrix elements of
complicated operators is the knowledge that matrix elements of simple operators
(like the Hamiltonian) are under control. Thus we need to see good. spectroscopy
calculations first.

Actually, I believe that the goal of calculating the complete low-lying spectrum
of QCD is presently unrealistic. The techniques at our disposal are too primitive.
Lattice methods cannot compete with continuum models which aré not QCD but
are QCD-inspired which give an essentially perfect fit to light quark spectroscopy!
However, calculations of matrix elements are much more model dependent. Since
we believe that the lattice “model” is more fundamental than the other approaches,
we want to use it to compute matrix elements. We want these calculations to be rea-
sonably reliable. Poor qualitative agreement of QCD spectroscopy with experiment
will indicat< that these calculdtions are not trustworthy.

Lattice gauge theory simulations allow us to vary physical parameters (quark
masses, number of flavors of sea quarks) in a way that experiment cannot. In princi-
ple, this gives us more information on confinement than we would get from real data.
Oxc cven hopes that the behavior of QCD’s with zero, 2 or 3 or 4 degenerate flavors
of quarks are quite different from each other, and from the real world, in which all
quark masses are different! (For future reference, simulations with zero flavors of
dynamical fermions are done dropping the fermion determinant from the functional
integral. This approximation is called the “quenched approximation.”) However,
present day simulations are presently limited by computer power and algorithms to
unphysical values of the dynamic quark mass, and unphysical numbers of flavors
or degeneracies. This means that if one’s goal is to make a direct comparison of
a simulation to the real world, one must -make an extrapolation. It’s important to
remember that the extrapolation is not part of the lattice simulation. It certainly
involves its own physical assumptions whose validity is independent of the valid
ity of the simulation. One should try to keep extrapolation issues as separate as



possible froun simulation issues.

While the goal of this chapter is spectroscopy, a large component of the discus-
sion will involve the study of wave functions of quarks and gluons inside hadrons.
I believe that the major advances in spectroscopy have come through our ability
to model and use realistic wave functions (mainly as interpolating fields), and that
essentially all future progress in this field will center on the study of wave functions.

The outline of this review is as follows: In Sec. II I will present an overview
of the basic techniques one uses in a lattice spectroscopy simulation, hopefully
done at a level suitable for a beginner. Sec. III is devoted to a set of interesting
open questions in lattice spectroscopy simulations. Secs. IV and V are reviews of
recent progress in glueball and quark spectroscopy. Finally I make a few concluding
remarks in Sec. VI. If you want to get an overview of the ingredients you “have to
know” to do a lattice simulation, read Sec. II. If you want to see how interesting
physics questions collide with lattice techniques, skip Sec. II and read Sec. IIL If
the year is later than 1994, ignore Secs. IV and V completely-they are (hopefully)
obsolete.



