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HARMONIC ANALYSIS ON HILBERT SPACE

Leonard Grossl)

Cornell Unlversity

gl. INTRODUCTION. A real valued stochastlic process £(t,w) almost
all of whose sample functions lie ln some linear space ;rﬁf functlions on
an interval I induces on Jr’in a natural and well known manner a probabil-
ity measure p. Specifically p 1s induced by the mapping ® - £(.,®) from
the probabillty space into Jr: Much of the study of a stochastic process
is equivalent to a study of the measure p on a sultably chosen space Jf.'
Most interesting stochastic processes for example have regular enough sam-
ple functions to be in L2(I) when I is a finite interval or in L2(I,w(t)dt)
when I 1s an infinite interval and w(t) 1s some weight function. In any
case 5Tais usually a locally convex topologlcal linear space and the
Fourler transform ¢ of w defined by ¢(y) = ¢f exp(i1<x,y>) du(x), which is
a function on the dual space Eft uniquely determines y when p is defined
on the o-ring generated by the weakly open sets. The relationship between
properties of p and properties of its Fourler transform have been studied
by & number of authors. See for example Prohorov [11], LeCam [9],
Getoor [5], Cameron and Donsker [4] and their bibliographies. In this
paper we shall prove three theorems which are Hilbert space generaliza-
tions of three classical theorems in the harmonic analysis of probability
measures. Theorem 2 1s a Hllbert space analogue of the Levy continuity
theorem. Theorem 3 is a generalization of the Bochner representation

theorem for posltive definlite functions on a Hilbert space H. It asserts
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2 LEONARD GROSS

that a positive definite function § on H is the Fourier transform of a
positive finite measure on H if and only if ¢ is continuous at the origin
in a topology which will be described later. Mourier [10], Getoor {5],
and LeCam [9] also have representation theorems but their conditions are
of a very different kind from ours., In addition to positivevdefiniteness
Mourier and Getoor place conditions not dlrectly on the functlon ¢ itself
but on the finite dimensional measures obtained by partially inverting ¢
while LeCam's conditions involve linear combinations of ¢ at different
points. R. A, Minlos [15] proves a representation theorem for a specilal
kind of nuclear space in which continuity of ¢ at the origin is the only
requirement beyond positive definiteness. His result is the closest to
ours in this sense, Theorem 4 describes a class of inversion formulae for
the Fouriler transform of a probability measure on H. Necessary and suf-
ficient conditions are given in this theorem for a particular inversion
formula to hold., We thereby extend the domaln of validity of some of the
inversion formulae developed by Cameron and Donsker in [4], which paper
formed the starting point of our investigation, We are indebted to
Professor Mark Kac for pointing out to us the relevance of the last named
paper to our own work, )

A fundamental role will be played by the notion of a weak distribu-
tion on a linear space. This somewhat more general notion than that of a
measure was first defined and explolted by I, E, Segal. 1In particular the
normal distribution which seems to be a good infinite dimensional substi-

tute for Lebesgue measure wlll be used extensively.

f2. PRELIMINARTES. We shall summarize first some of the basic re-
sults of Prohorov [1i] which we shall have occasion to use, Let X be a

separable complete metric space and let 7] be the space of positive finite

measures defined on the O-ring generated by the open sets of X, A
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sequence W, of measures in ™ 1s said to converge weakly to a measure p in

7ﬂu if \J’f dun — Lf‘f du for every bounded continuous function f on X.
. X X

Tt is shown in [11] that the topology thus induced on " is equivalent to
the topology induced by the following metric on WL_: Af p and ¥ are in "
then p(n,v) = infle : p(F) { v(F€) + e and v(F) { w(F) + e for all closed
F C X} where F€ denotes the open € neighborhood of F, It 1s also proved
in [11] that 7] is complete in this metric and most important is the fol-
lowing theorem,

. THEOREM (PROHOROV). A set of measures 7] < /1, is precompact if and
only if there 1s a constant M such that p(X) { M for 21l p in 7L and for
every € > O there exists a compact set K, such that u(X - K,) < e for all
£ in Y]. Alternatively, 7] is precompact if and only if u(X) { M for all
Kk in 7Q_and for every ¢ > 0 and 6 > 0 there exists a finlte set F of
points in X such that pu(X - Fs) { € for all u in 7.

Some of the above results have been extended to non-separable metric
spaces in [14]. However in a non-separable Hilbert space 1t is not clear
that the Fourier transform of a measure defined on the O-ring generated by
norm-open sets determines the measure uniquely and it may very well not.
There are various assumptions that one might make about the class of
measures under conslderation to alleviate this and other diffilculties.
However the resulting theorems seem to be 1little more than theorems about
measures in separable spaces anyway 80 we shall consider for the most part
only separable Hilbert spaces.

By a random variable on a probability space N\ we shall understand
an element of the llinear space of measurable functions modulo null func-

tions on ().

DEFINEEION 1. A weak distribution on a'topological linear space L

1s an equlvalence class of linear mappings F from the topological dual



§ LEONARD GROSS

space 1¥ to random variables on a probability space (depending on F) where
two such mappings Fi and Fé are equivalent if for every finite set of vec-
tors ¥y ,...,7 in L* the sets {Fi(yi),...,ri(sk)] have the same joint dis-
tribution in k space for 1 = 1 or 2,

Here L" denotes the gspace of continuous linear functionals on L,

Weak distributions have been investigated in numerous papers by I, E.
Segal. Their connections with stochastic processes have been discussed
extensively by S. Bochner [2] and [3]. Weak distributions have also been
studied as such by R. K. Getoor [5), J. Feldman and the author.

In a finite dimensional space a weak distribution colncides with the
notion of a measure l.e, if L 1s finite dimensional then for any given
weal distribution there exists a unique Borel probability measure on L
such that the identity map on L* 15 a representative of the glven weak
distribution, We refer the reader to [12] or [7] for further discussion
of weak distributions.

The (canonical) normal distribution (with variance parameter one in
this paper) on a real Hilbert space H is that unique weak distribution
which assigns to each vector y in H* a normally distributed random vari-
able with mean zero and variance || y||2. It follows from the preceding
property that the normal distribution carries orthogonal‘vectors into in-
dependent random variablea., Some of the theory of integration with re-
spect to a measure can also be carried out with respect to a weak distri-
bution. See [7] and its bibliography in this connection.

We shall assume that the following notlons and facts are known to

the reader, A tame function on a real Hilbert space H 1s a function of

the form f(x) = ¢(Px) where P is a finite dimensional projection on H and
¢ is a Baire functipn on the finite dimensional space PH. For such a
function We have f(x) =w((x,x1),...,(x,xk)) where X;,...,%, 18 a basis of
PH and ¥ 1is a Baire function of k real variables. If F 1s a representa-
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tive of a weak distribution then the random variable £~= v(F(xl),...,
F(xk)) depends only on the function f and the mapping F while integration
properties of £~ such as the integral of £~, the distribution of f~, con-
vergence in probabllity of sequences fﬁ'etc. depend only on f and the fn
and on the weak distribution of which F is a representative, Let us de-~
note by :ﬁ-the directed set of finite dimensional projections on H direc-
ted under inclusion of the ranges. For a given continuous function f on H
and a given weak distribution one may consider whether the net (f o P)™~

of "tame random variables," where P ranges over the directed set 5rl‘con-
verges in probabillity as P epproaches the identlty through 5’: If s0
then the 1limit which we shall denote by £~ is a random variable whose in-
tegration properties are determined by the function f and the weak distri-
bution. In [6] and [7] classes of continuous functions are described for
which the 1imit defining the random variable f ™ exists when the weak dis-
tribution in question is the normal distribution, We shall need for the
most part only a special case of Theorem 1 of [6] and Corollary 5.3 of [T7]

as follows.

DEFINITION OF THE TOPOLOGY J . T 1s defined as the weakest topo-
logy on H for which all Hilbert-Schmidt operators are continuous from :T-
to the strong topology of H., Thus a basic open nelighborhood of %, is
{x: || a(x - x,) I} < €} where A 1s a Hilbert-Schmidt operator,

THEOREM., If a complex valued function f on H is uniformly continu-
ous in the topology T then £~ = 1im in prob.PeI(f o P)"Jexists with re-
spect to the normal distribution., PFurthermore if H 1s separable and {PJ]
is any sequence of finite dimensional projections converging strongly to
(fop,)

the 1ldentity operator then lim in prob exists and equals 4

o>

J

DEFINITION 2, The Fourier transform (or characteristic functional)
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of a weak distribution y — m(y) on a topological linear space L is the
function on L* defined by ¢(y) = E(m)[exp(i m(y))] where E(™ genotes ex-
pectation with respect to the weak distribution m.

A rough classification of weak distributions is as follows.

DEFINITION 3. A weak distribution m on a Banach space B is continu-
ous if m(yk) converges to zero in probability whenever y, is a sequence
converging to zero in norm in B¥. A weak distribution m on & topological
linear space L is a measure if there exists a probability measure p de-
fined on the o-ring q/ generated by the weakly open sets of L such that
the identity map on L¥ is a representative of m.

A weak distribution which 13 a measure may and will be identified
with the measure p to which it corresponds in the manner of Definition 3
when the unlqueness of u 1s certain. Such uniqueness 1s easily seen to
hold within the class of measures defined on the above mentioned O-ring w{
It is clear that a probabllity measure on any O-ring in a Banach space B
containing the weakly open sets defines a contlnuous weak distribution on
B.

Concerning the domain of definition of measures on a Banach space B
we mention that if B 1s separable the O-rings generated by the weakly open
sets and the strongly open sets are the same,

The notion of a closed weak distribution may also be defined and has
been considered in [13] but will not be studied in this paper. Each of
the above smoothness conditions on a weak distribution reflects itself in
the smoothness of 1ts characteristic functional, We have for example the
following theorem by Bochner [2, Theorem 6] and Getoor [5, Cdrollary 1 of
Theorem 1],

THEOREM. If m is a wesk distribution on a Banach space B with char-

acteristic functional ¢ then the following are equivalent
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1) ¢ 1is continuous at the origin of B¥
2) m is conbtinuous

3) ¢ 1s uniformly continuous on B*.

In this connection see also Corollary 3.1 of the next section.

DEFINITION. A complex valued function ¢ on a linear space L is pos-
itive definite if for every finite set KyseeesXy in L and complex numbers

C1seeesCy there holds B, 4 ¢4 Ty ¢(x; - xJ) 2 0.

We note here for later use that if B is a Banach space and ¢ is a
normalized (i.e, ¢(0) = 1) continuous positive definite function on B¥
then there exists a weak distribution on B whose characteristic functional

is ¢. This was proved by Getoor [5].

8§3. THE CONTINUITY THEOREM AND REPRESENTATION THEOREM., All meas-
ures will be defined on the o-ring generated by the norm-open sets. The

following theorem does not require separability.

THEOREM 1. The Fourler transform of a complex valued measure of
bounded variation on a real Hilbert space H 1s uniformly'wgpcontinuous on

H.
PROOF. If ¢(y) = J;{ exp(i(s,y)) du(s) where p is of bounded varia-
tion then [§(y) - ¢(x)| < J\H lexp(1(s,y)) - exp(4i(s,x))|d|n|(s) =
. lexp(i(s,y-x)) - 1| d|p|(s). We shall show that the last expression

i1s small when y-x lies iIn a small :r~neighborhood of the origin and for
this purpose we may assume that p is a positive finite measure. Denote by
S, the open sphere of radius r centered at the origin. Then u(Sr) -+ w(H)
as r » », Uiven € ) O choose r so large that n(s,) 2 W(H) - ¢/4., The bi-
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linear form [x,y] = g {s,x) (8,y) du(s) is symmetric, positive and bound-
Sr'

ed stnce |[x,¥1] < ||xllivll »® #(8,). Hence for some positive operator B

we have (Bx,y) = g {s,x) (s,r) du(s). Purthermore B is a trace claas
S
r

operator since for any finite subset of an orthonormal basis [xu} we have

2 . (Bx, ,x )= 5 1 (s,x, )? au(s) S,‘f fl's [12au(s) < r? w(s,)

J=1 a a J=1 o r
J J S, J Sp

and hence Za(Bxa, xh) g_r? u(sr). Let A be the positive square root of B,

Then A is a Hilbert-Schmidt operator. Now choose a positive number & such
that [exp(it) - 1| < e¢/(4 p(H)) whenever [t|{ { & and put a = &< /8. Ve
shall show that if || A(y-x)||Z < a then |#(y) - &(x)] < €. Let Eg =

{s €8, : I(s,y-x)] < 8}. Now Js (s,y-x)% dau(s) = || A(y-x) |12 < a.
r

Hence 8° u(sr - Ea) {a=% €/8 =0 that n(s, - Eﬁ) < ¢/8. Thus

SH Jexp(i(s,y-x)) ~ 1| an(s) ZSH < du(s) + 2 f du(s) +

- -~

r r b
(e/(% u(H))) gE au{s) < €/2 + ¢/4% + ¢/b = e,
2}

REMARK , In view of the preceding theorem the Fourier transform ¢ of
a measure p of bounded variation defines a random variable with respect to
the normal distribution. This random variable will be denoted by ¢~ . We
note also that if v is a positive real number then ¢{vx) 1s also uniformly

:T‘continuous. The corresponding random variable will be denoted by

d(vx)".

THEOREM 2. Let By be a sequence of probabllity measures on a real
separable Hilbert space H with respective characteristic functionals ¢n'
Let ¢ be a uniformly’zféontinuous functional on H such that ¢(0) = 1. If

[ conveﬁEes weakly to a measure p whose characteristic functional 1s ¢
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then ¢, converges to ¢ on H and ¢ converges to ¢™ in probability. Con-
versely if ¢;'conVerges to ¢~ in probability then W, converges weakly to a
probabllity measure w with characteristic functional ¢.

LEMMA 2.1, Let u be a probabllity measure on Ek with characteristic
function ¢. Denote by n Gauss measure on E, with variance one i.e. dn(x)
= ('21r)"k/2 exp( -l x IF/E) dx. Let A be a linear transformation on E,_ and
let 7, r and v be positive numbers. Put o = n(ft: v|| At || < 7}) and
g =2/((2r)2 yra), 1f < 1 then

-1 t) dn(t)] - 8
1 ws,) > la ol as [I<< ¢(vt) an(t)|
1-8
where S, = (x : x| < rl.
PROOF.
L (omy k2 j 2
Sv" at “ST¢(vt) an(t) = (2w) ol as |l S_ch(vt) exp( II#H /2)at
= (21,-)'1‘3/2 g, g exp[vi(t,x) - || ¢ lﬁ/é] au(x) dt.,
vil at ||{r VYE

n.
Interchanging the order of integration and denoting by S; the complement
of Sr we obtain

|§v” o ligs 20 an(t) |

< (ar)K/2 f f ex( || £ l12/2) at du(x)

S, "Vl e &

+ l S f exp[vi(t,x) - || t |F/2] at au(x)| .
sp " vllas[Kr

The first term on the right of the last inequality 1s exactly au(sr). In
order to estimate the second term we shall carry out a partial integra-~
tion., Consider a fixed x # 0. Let F be the k-1 dimensional subspace of
Er orthogonal to x and denote by R the projection onto F of the (possibly
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degenerate) ellipsoid 8 = {t : v||At|{< T}. PFor each t' in R the line
[sx1+t':-w { 8 { =} where X, = %/|l x|| intersects the boundary of S in at
most two points, say at a(t')x, + t' and b(t') X, + t' where a(t') < p(t").
If the line does not intersect the boundary of S then 1t is contalned in S

and for such a t' put a(t') = -» and b(t') = +». Then

| S exp(vi(t,x)) exp(-|| t IF/E)dtl
vilat||<
o(t')
- |g S exp(1vs| x ||} exp( -s"‘/z)ds) exp(-]| t' 1P/2) at’
R Wa(t")
_ |g < 1 {[eivallxlle—sz/a I
g \illx |l a
b 2 1 e
. g o visllxll 522 o ) | -llt' IB/2 g0
a
b | .
N g {e-b2/2 + e—az/e +§ |s|e'32/2 ast eIl t 132 at"
vix Il Jdg .

bl
< vl Ih g {e'bz/z +e” 2/2+ S s e‘se/2 ds
R 0
lal
+ g' s e'sa/2 ast el t' |P/2 at'
0

<amlixl S {e-b"’/2 v o222 , (1 - VP2

R
2 2 .
e (1 -e2/2)f omllE"1I5/2 g

Cemvllx 1) g oIl 87122 4y

R
< evllxll) § eIl et 1572 g
F

< evllx |l (em)kl)/2
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Hence
1
I%S ¢(vt)dn(t)| < Xap(s,) + (2/(2r)%v) S‘ = Il 7t au(x))
vil at ||<x Sp

< u(8,) + 2/((2r)2avr) (1 - w(s,)

Cu(s,) (1 -8)+8
from which the assertion of the lemma follows.

REMARK. In case the dimension of E, is one and A is the identity
operator the lemma impliles a well known ineguality. Thus 1t is easy to
see that (2r)Y2 va =§ exp(-t2/2v%) at — 271

lel<s
as v » @, Hence if 1/(rr) { 1 then for sufficiently large v the B of the
lemma is less than one and we have u([-r,r]) 2 lim, , (1 - ﬁ)'l .

T
(Jer2ua) | 4(e) exp (-t2/27) at | - p)
-T

T
= (1 - (rr)" 1)1 (|(21)'1 ( d(t) at|‘ - (r0)7Y).

-T

LEMMA 2.2, Let p be a probability measure on & real separable Hil-
bert space H. Denote by ¢ its characteristic functional and let A be a
Hilbert-Schmidt operator on H. let 1, v and r be positive real numbers
and let a = Prob.(v|] Ax H’Jg_t) where || Ax "’uis defined with respect
to the normal distribution on H. Let g = 2/1(2w)1/?vnm). If B < 1 then
| & B(O(vxY%(}) ax M) - 8
l1-8

(2) w(s,) >

where S, = {x : =1 <{ r}, x(s) 1s the characteristic function of the
e
interval [0, 7/v] and E denotes expectation with respect to the normal

distribution.
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PROOF. Let Pk be an increasing sequence of finite dimensional pro-
Jections on H converging strongly to the identlty operator. The distribu-
tion function of || Ax IIN2 1s continuous since || Ax [P~ is a (possibly
infinite) sum of independent random variables with continuous distribution
functions and as is known convolution with a continuous distribution func-
tion ylelds a continuous function. Hence if a, = Prob.(||APk|rﬁ’£_r/V)
then a, + a as k » = since IIAka 1™ converges to || ax ]| in probability.
Furthermore x(IIAka II”") converges in probability to x( || Ax ||” ) as k + =,
To see this we note that the random variables x(|| AP x [I”") converge in
measure to x( || Ax ||™) on the set where | |[A(-) {|” - t/¥| > & and since
this set has arbitrarily small measure when 6 is chosen small (since
|| Ax ]|~ has a continuous distribution function) the assertion of the pre-
ceding sentence follows. Now conslider the probability measure (o defined
on P H by means of uk(B) = u(Pil B) for each Borel set B in P H. Its
characteristic function is exp(i(x,y)) du o Pil(x) =

P

S exp( 1(P,x,5)) au(x) = §(y) for y in BH. If B = 2({2r)/2 vrg )t
H

then Bk + B 8o that for sufficiently large k we have Bk < 1. Hence by
Lemma 2.1 we have _
-1 —~ —~
%y E(¢(VPkY) X( " APky u ))| = Bk
1 - Bk

w5y > !

where Sgk) denotes the central closed sphere of radius r in PkH. The
right side of this inequality converges to the right side of (2) as k » o,

Furthermore uk(sgk)) = u(Eil Sr). The sequence Pil

Sr is a decreasing
sequence of closed cylinders whose intersection 1s Sr for 1f x is in

(i1 i~ Sy then Byx 1s in 5, for all k, But as x = lim_ P,x and S,

is closed x 1s in S,. It follows that lim, u(P];1 Sr) = u(Sr) and this

establishes the lemma.



HARMONIC ANALYSIS ON HILBERT SPACE 13

REMARK. We note that the quantity a in the previous lemma is strictly
positive., This is established in [6, Lemma 1.1.1].

LEMMA 2.3, 1If {u.k] is a sequence of probability measures on H with
respective characterisitc functionals ¢k and if ¢;v converges in probabil-
i1ty to ¢"’wheré ¢ is a uniformly J continuous function on H and ¢(0) = 1
then for every € ) O there exists a sphere S, in H such that ""k(sr) Z l1-¢
for all k,

PROOF., Let A be a Hilbert-Schmidt operator such that |1 - ¢(x)| < e/4
whenever || Ax || 1, Let a = Prob (|| Ax ||~ 1) and let r be so large
that 8 = 2/((21r):"/2 ra) { 1/2, If x 1s the characteristic function of

[0,1] then by Lemma 2.2 we hfve
a ™ E(G ()" x(] ax |7 )] -8
WERD] S —

Now insert ¢k(x)'v =1 - (§(x)" - ¢k(x)'“) - (1 - ¢(x)) into the right
side of the last inequality and note that E(x( || Ax ||7)) = a. Furthermore
1 < &(x)" ] x(l ax |7 g (e/#) x(1l Ax ||”) almost everywhere as fol-
lows from the fact that X(|| Ax ||™) = 1im. in prob. x(||APJx|r~3 when P
approaches the identity strongly through finite dimensional projections
while |1 - ¢(x)| X(|| Ax |]) € (e/4) X(|l Ax |) for all x. Thus we obtain

(8 2 1 - (1-8)7 ™ E(I(x)T - 4 (x) T x( ax I7T)) - 2 e/b,

Since ¢{: converges to ¢ in probpability and all are bounded the second
term of the last inequality approaches zero as k - », Hence for all
sufficliently large k we have p.k( Sr) 2 1 - €, By enlarging r we may obtaln
. this inequality for all k.

LEMMA 2.4, If {u, ) 1s a sequence of probabllity measures on a real
separable-Hilbert space H with characteristic functionals ¢k and if ¢£“

converges in probabllity to ¢"’where d: is a uniformly T continuous func-
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tion on H with ¢(0)= 1 then for any cofinite dimensional projection P on
H (4 o P)” converges in probability to (¢ o P)" .

PROOF. We note first that for any projection P ¢, o P and § o P are
uniformly fT continuous so that (¢k o PVand (¢ (o} P)~exist. By asasump-
tion the projection @ = I ~ P is finite dAimensional. Regarding momen-
tarlly ¢k o P as a function on PH we see that there exists a finite dimen-
sional projection P, on H such that P, < P and such that Prob.(|¢ o P}
-( ¢k oRY" | 2 1/k) € 1/k whenever R 1s a finite dimensional projection
with P, { R{ P, The sequence (P} may and will be assumed increasing and
have strong limit P, Since any finite dimensional projection on H may be
dominated by a projection of the form S + Q where S is a finite dimensiona
projection dominated by P we may also assume by enlarging the Pk if neces-
sary that Prob.(|¢; -, (s + Q7| > 1/k) € l/k whenever S is a finite di-
mensional projection and P < 8 { P. 1In particular we have

(3) Prob.( (4, o P)~ - (¢, 0o B) | 2 1/k) < 1/k
and
(% Prob.( |8, - (&, o (P +a))™ | 2 1/k) € 1/

for all k. Since P, + Q converges strongly to the identity (¢ o (Pk+Q) )~
converges in probability to ¢~ by Corollary 5.3 of [7). Furthermore from
(4) and from the inequality °
Cand ~ o~ o~ —~ ~
¢ o (B + Q7 -6 0 (P +QT 1< 1 ¢ (P +Q =071+ 10" -4 +
~ ~

19~ 8, o (P, + Q)| 1t follows that (¢ o (B, + Q)" - (§, o (P, + Q)
converges to zero in probability.

We assert that ¢k(x) 1s strongly continuous in X uniformly in x and
k. This follows from Lemms 2.3 for if € » O let r be so large that

m(8,) 2 1 - € for a1l k. If |t] o implies |el®-1] < € then



