DE GRUYTER

Petr N. Vabishchevich
ADDITIVE OPERATOR-

DIFFERENCE SCHEMES

SPLITTING SCHEMES



Petr N. Vabishchevich

Additive Operator-
Difference Schemes

Splitting Schemes

- -

NN R

W, 3

De Gruyter



Mathematics Subject Classification 2010: 65J08, 6510, 65M06, 65M12, 65M22, 65M5S5,
65205

ISBN 978-3-11-032143-2
e-ISBN 978-3-11-032146-3

Library of Congress Cataloging-in-Publication Data
A CIP catalog record for this book has been applied for at the Library of Congress.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.dnb.de.

© 2014 Walter de Gruyter GmbH, Berlin/Boston

Typesetting: PTP-Berlin Protago-TEX-Production GmbH, www.ptp-berlin.de
Printing and binding: CPI buch biicher.de GmbH, Birkach

& Printed on acid-free paper <
MIX
Printed in Germany Hoc aingevolion Grsten
ey FSC® C003147

www.degruyter.com



Petr N. Vabishchevich
Additive Operator-Difference Schemes



A, 5B 5E #EPDFIE U5 19] : www. ertongbook. com



Preface

Applied mathematical modeling is basically concerned with the necessity to solve un-
steady problems of mathematical physics. A mathematical model for simulation may
include as elements both initial value problems for systems of ODEs and, which is
most often, time-dependent PDEs. To construct discretization in space, finite differ-
ence schemes or finite element procedures are widely used in various ways. This re-
sults in transient problems for systems of ODEs. A specific feature of these problems
of mathematical physics is in their high stiffness.

In this book, we study mathematical modeling problems in the corresponding finite-
dimensional real Hilbert or Banach spaces as problems with the initial conditions for
operator-differential equations. We investigate linear problems that are written in the
form of evolutionary equations of first or second order and their systems. As a rule,
these mathematical models are essentially nonlinear — the world is nonlinear, and, as
academician Samarskii said, linear models comprise only a particular and very simple
case. The primary linear models provide the basis for developing efficient computa-
tional algorithms, i.e., for designing elegant theoretical constructions that are used to
verify their well-posedness and accuracy. Numerical methods for solving linear prob-
lems give us a methodological basis to construct algorithms for nonlinear problems.

Discretization in time is conducted using one or another difference approximation.
This allows us to move from the Cauchy problem for operator-differential equations to
operator-difference schemes. Unconditionally stable schemes are constructed employ-
ing implicit schemes. In view of stiffness of ODEs, explicit schemes have no practical
interest. Optimization of computational algorithms for solving unsteady problems is
associated with simplifications of the problem at the upper time level.

A typical situation is the case where the operators of the problem under consid-
eration are represented as the sum of operator terms. Additive operator-difference
schemes are attributed to the transition from a complex problem to a chain of simpler
problems for the individual terms in this operator splitting. This splitting may have a
different nature: the individual operators, e.g., may be associated with splitting with
respect to the spatial variables or the decomposed parts may have different treatments
in the sense of physical phenomena.

The classical examples of additive difference schemes are the ADI algorithms as
well as locally one-dimensional schemes. They have been widely used in computa-
tional practice for more than half a century. Their study is based on the fundamental
concept of summarized approximation. Nowadays, new classes of additive difference
schemes are being developed. A major contribution to this research area is provided
by the Russian (Soviet) school of computational mathematics.



vi Preface

The key results obtained in the theory and practical usage of splitting schemes are
presented in detail in the book by Marchuk Methods of Splitting, 1989 (in Russian).
In 1990 this book was published in English (Handbook of Numerical Analysis, Vol.1.
Splitting and Alternating Direction Methods, Elsevier). New research results on the
theory of additive schemes (schemes of splitting) are reflected in our joint book Addi-
tive Schemes for Problems of Mathematical Physics written with Samarskii. This book
was published by Nauka, Moscow in 1999, in Russian, with a small edition. Unfortu-
nately, it has actually gone unnoticed by English-speaking readers. This fact as well
as the necessity to reflect the recent progress in constructing and studying additive
schemes became the main reason for writing the new book.

The book is fundamentally concerned with constructing additive difference schemes
to solve numerically unsteady multi-dimensional problems for PDEs. Two classes of
schemes are highlighted: methods of splitting with respect to spatial variables (alter-
nating direction methods) and schemes of splitting into physical processes. Region-
ally additive schemes (domain decomposition methods) are also developed for parallel
computing. Unconditionally stable additive schemes of multicomponent splitting are
considered for evolutionary equations of first and second order as well as for systems
of equations. The matter of the book is primarily based on the results derived by the
author and his co-authors during the last twenty years.

To present the material, we use the minimal mathematical tools concerned with
the basic properties of operators in finite-dimensional spaces. The study of additive
schemes is based on the general theory of stability for operator-difference schemes
developed by Samarskii in the framework of finite-dimensional Hilbert spaces.

Moscow, Petr N. Vabishchevich
April, 2013
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