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PREFACE

It is becoming fashionable, and indeed necessary, for all educated people to
learn some mathematics. Within the past decade this attitude has been fostered
by the increasing emphasis in the elementary and secondary school “new math”
courses on reasoning, both inductive and deductive. This book is intended to
provide a first course in college mathematics from the same point of view. It
grew out of an effort to design a comprehensive, up-to-date, introductory mathe-
matics course for college freshmen, especially those who do not intend to major in
science or mathematics. In particular, the objectives of the book are:

1. To provide an introduction to the nature of mathematics as a major field
of intellectual endeavor that is at least as much an art as it is a science;

2. To provide an acquaintance with the history of mathematics, so that the
human aspect of the subject is not neglected;

3. To develop in the student abstract and rigorous thought processes; and

4. To foster an understanding of and facility with some of the basic concepts
of contemporary mathematics.

Starting with some elementary logic and the concepts of set and element, the
book develops much of the basic theory of sets, functions, and algebraic struc-
tures, motivating each step of the development by a consideration of one of the
following two questions: Given any collection of things, how can we compare
them and how can we combine them? Once the fundamental algebraic machinery
has been established in Chapters II-1V, it is applied to the major topics of ele-
mentary mathematics in Chapters V-VIII. In Chapter V the various number
systems are constructed, with brief excursions for discussions of numeration
systems and number theory. Chapter VI begins with a consideration of the
geometry of incidence; and then Euclidean geometry, the non-Euclidean geom-
etries, and projective geometry are treated from both the axiomatic and alge-
braic viewpoints. Chapter VI culminates with a brief look at topology as a gen-
eralization of geometry. Chapter VII unites many of the concepts presented in
the previous two chapters by relating geometry and algebra through a considera-
tion of coordinate systems. Chapter VIII begins with a set-theoretic treatment

vii
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of probability and then relates the theory to statistics. In Chapter IX the book
turns to a more abstract question, investigating various kinds of infinity. After
describing mathematical induction and the idea of limit, the comparison of
types of infinity leads to transfinite arithmetic. The chapter ends with a brief
discussion of the three major philosophies of mathematics, comparing their
points of view especially with regard to the set theory just treated. Besides the
historical comments within the chapters, there is an appendix that outlines the
history of mathematics from prehistoric times to the present.

Although there are no specific prerequisites, it is expected that the reader’s
background includes at least two or three years of high school mathematics.
Of course, students with better backgrounds will be able to progress more
rapidly, and so the pace at which the material is covered will necessarily depend
on the students involved. In general, there is sufficient material for a two-semester
course that meets three times a week. If the students are mathematics majors, the
depth of the course may be increased by the inclusion of material related to the
discussion topics that are at the end of many sections and by an insistence on
strict rigor in proofs of exercises. In this way the book may be used to provide
freshman or sophomore mathematics majors with an introduction to abstract
algebraic techniques and a “‘preview of things to come.”

The contents of this book may be divided into three major parts relative to
their use within a course. Chapter I and the historical Appendix are intended to
provoke discussion about the nature of mathematics and to put the subject in
historical perspective. Although they may be used anywhere in the course, they
are especially useful as reading assignments at the beginning so that they may be
referred to throughout the course. Chapters II, III, and IV should be covered in
their entirety in the given order. (The only exception to this is Section 4 of Chapter
IV, which may be omitted except for the definitions of ring, integral domain,
and field.) The remaining chapters apply this machinery to various topics;
therefore there is more flexibility in their use. In particular, Chapters VIII and
IX are independent of each other, and either or both may be omitted if a shorter
course is desired. Many important ideas are contained in the exercises. Hence,
most of them should be done, or at least attempted.

There are many people to whom I owe a debt of gratitude for their en-
couragement and assistance in the preparation of this book. I am extremely
grateful to Professor Dan E. Christie of Bowdoin College, who read the entire
manuscript and made many valuable suggestions. I would also like to thank my
colleagues at the College of Saint Rose, especially Sr. Kathleen Ann Bellcourt
and Sr. Noel Marie Cronin, for their many helpful comments and inexhaustible
patience while they taught preliminary versions of the text. Finally, I would
like to thank Dr. Richard T. Wareham and Miss Martha W. Allen of D. C.
Heath and Company for their kind assistance, and my wife Roberta for the
many long hours she spent typing the manuscript.

William P. Berlinghoft
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I

ON THE NATURE OF MATHEMATICS

Mathematics is rooted historically in the empiricism of the Babylonians and
other pre-Hellenic peoples, whose trial-and-error methods of boundary demarca-
tion and building were eventually organized into numerical rules of procedure.
Hence, from its earliest stages it has been a servant of man aiding his endeavors
in other fields of human activity as a single exact language applicable to all fields
that require reasoning. Today the general theories and procedures of mathematics
simplify and refine the treatment of countless topics, and by translation into
this common tongue the methods of many different disciplines are brought to
bear on each other’s problems. Our most common mathematical experience is
the use of arithmetic in day-to-day business transactions, but one need not look
very far to find mathematics serving man in a host of other fields. The physical
scientists depend upon calculus and methods of analysis; the business world
and the biological and social scientists are becoming involved more and more
with statistical methods, probability, linear programming, and decision theory;
philosophers recognize the importance of Boolean algebra as a tool for the study
of logic; even the artist uses geometric ideas such as symmetry and projection
to aid in his creative expression. These examples portraying the varied uses of
mathematics in other fields could be multiplied many times over, but instead
let us proceed to another viewpoint.

A science is characterized by its devotion to the discovery and organization
of general truths and its concern for the operation and application of general
laws. In this sense we shall claim that mathematics is a science, for the very
heart of the subject is the establishment of orderly procedures and the study of
the logical implications of statements. Even in your own mathematical experi-
ences you can observe that Euclidean geometry possesses the characteristics of
a science apart from any application it may have to the physical world, and the
same may be said of algebra or any other branch of the field. Moreover, mathe-
matics governs the employment of scientific principles and thus becomes the
organizer of all science.

This characterization of mathematics is, however, far from sufficient. It is
not merely a science. It is not even just the “queen of sciences,” as some have

1



2 ON THE NATURE OF MATHEMATICS

said. There is in this field of thought a type of creativity found only in the fine
arts. The men who first constructed the various systems of non-Euclidean geom-
etry participated in a creativity quite similar to that of Rembrandt or Michel-
angelo. Mathematical imagination at least equals and often surpasses that
required by the other fine arts, since the mathematician is neither aided nor
confined by material forms of expression. His is a world of pure abstraction;
he “lives in ‘the wildness of logic’ where reason is the handmaiden and not the
master.”’t Although many mathematical theories have arisen in response to the
challenge of specific problems in the natural or behavioral sciences, the creative
mathematician often generalizes the original solution of a question and from it
builds himself a logical edifice, posing and investigating questions of abstract
structure without any regard to their connection with the world around him.
He designs and constructs with a taste for order and harmony, pattern and
symmetry, precision and generality. Nevertheless, some writers assert that the
mathematician does not create any more than Leverrier and Adams created the
planet Neptune or Admiral Peary created the North Pole. They claim that,
since he is bound by reason, the man who designs a mathematical system is
merely discovering one of the many patterns of thought that already exist as
logical consequences of the various initial statements used as hypotheses. One
could reply that this is tantamount to asserting that Rodin discovered “The
Thinker” since he merely shaped a piece of stone into one of the many forms it
was already capable of assuming; however, the roots of this question lie deep in
philosophy and we shall not attempt to resolve the controversy here.

It should be apparent by now that the nature of mathematics defies simple
description. As an art mathematics creates new worlds, and as a science it
explores them. It is a common unifying force present in all human intellectual
endeavor, forever broadening the horizons of the mind, exploring virgin ter-
ritory, and organizing new information into weapons for another assault on the
unknown. “Itis a language, a tool, and a game—a method of describing things
conveniently and efficiently, a shorthand adapted to playing the game of common
sense.”] It is “the subject in which we never know what we are talking about
nor whether what we say is true,”’§ and yet it is basic to the organization and
interpretation of all truth. It demands a novelist’s imagination, a poet’s per-
ception of analogy, an artist’s appreciation of beauty, and a politician’s flexibility
of thought. Mathematics is indeed an integral and indispensable part of every
truly liberal education. It is “the thinking man’s liberal art.”|

FOR DISCUSSION

Compare mathematics with the various fine arts that you know, indicating simi-
larities and differences.

t [41], p. 612.
1 [53], p. 90.
§ Bertrand Russell, International Monthly, Vol. 4, 1901.
111297, p. 113.
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THE FOUNDATIONS OF MATHEMATICS

1. LOGIC

If one were required to single out the dominant characteristic of mathematics,
it would have to be “reasonableness.” In fact, mathematics is utterly dependent
upon man’s innate rationality, and hence if we are to discuss mathematics at all,
we must begin with a consideration of that elusive concept we call reason. But
since every intellectual consideration is by nature rational, we are forced to use
reason to analyze reason, an awkward situation at best, leading to intricacies
whose investigation we leave to courses in philosophy. We must content our-
selves with a brief exposition of those basic logical principles that are essential
to mathematical discourse.

The notion underlying all discourse is that of a meaningful statement. Such
a statement is called a proposition, and each proposition has a truth value, which
in our logical system is either true or false, depending upon the context in which
the statement appears. The assertion that there is no category between frue and
false in which we may place a statement is usually called the Law of the Excluded
Middle. We also assert that a statement may not simultaneously possess both
truth values. This is the Law of Contradiction.

From any proposition we may derive several related propositions:

(a) the negation or contradictory of the proposition, a statement character-
ized by the fact that it always has the opposite truth value from the
original proposition, and

(b) contrary propositions, statements that are false whenever the original
proposition is true, but may still be false when the original proposition
is false.

EXAMPLE!: Consider the proposition “The wall is red.” Its negation is
“The wall is not red.” Several contrary propositions are ‘“The wall is
green,” “The wall is yellow,” and “The wall is blue.” The proposition “The
wall is concrete” is neither the negation nor a contrary of the original
proposition.
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NOTATION:: Propositions are usually denoted by small italic letters,
especially p and g. The negation of a proposition p is denoted by ~p.

Propositions may also be categorized with regard to their scope, and thus
are either universal or existential. A universal proposition is an assertion about
all things of a certain kind, whereas an existential proposition merely asserts the
existence of at least one thing that satisfies the statement. The negation of a
universal proposition is existential, and the negation of an existential proposition
is universal.

EXAMPLES: “All buildings have flat roofs” is a universal proposition;
its negation is ““There exists a building that does not have a flat roof.”

“There are pink elephants” is an existential proposition; its negation is
“No elephants are pink.” (i.e., “All elephants possess the property of
not being pink.””)

NOTATION: V means “(for) all”’; 3 means ‘“‘there exists.”” Thus, the uni-
versal statement “All buildings have flat roofs” may be written formally as
“B has a flat roof, V buildings B,” and the existential statement “There are
pink elephants’ may be written “J a pink elephant.”

Closely allied to the notion of proposition is that of propositional function,
an expression in the form of a statement but without truth value that simply
states a relationship involving symbols or variables whose meanings have not
been determined.

EXAMPLES: “Every A4 contains a B.” ““There is a gznk in the parking lot.”

Now that we have considered propositions singly, we move to a considera-
tion of relationships that exist between pairs of propositions. The most basic
of these is implication. A strict definition could be given for “implies,”’+ but for
our purposes it will suffice to say that “p implies ¢ means that the truth of
proposition p insures the truth of proposition ¢; that is, if p is true, then g is true.
We say that p is a sufficient condition for ¢, and ¢ is a necessary condition for p.
Notice that if p and g are specific propositions, the statement “p implies ¢” is
itself a proposition, called a conditional or an implication, whose truth value is
“false” if and only if p is true and ¢ is false. In all other cases, the conditional
is considered a true statement. p is called the hypothesis and ¢ the conclusion.
If we take any conditional and interchange its hypothesis and conclusion, we
obtain the converse of that conditional.

EXAMPLES: “If it is spring, then the grass is green” is a conditional
in which “It is spring” is the hypothesis and “The grass is green” is the

T Strictly, “p implies ¢”” means “p is false or g is true.”
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conclusion. The converse is “If the grass is green, then it is spring.”

NOTATION: “p implies g” is written p = ¢, and its converse is ¢ = p.

The truth value of a conditional is not related to that of its converse; that
is, a true conditional may or may not have a true converse. If it does, then the
hypothesis and conclusion are said to be equivalent. The two most common ways
of expressing the equivalence of propositions p and g is by saying “p is necessary
and sufficient for ¢g”” or “p is true if and only if g is true.” This type of statement
is called a biconditional or an equivalence.

EXAMPLE: “Two sides and the included angle of triangle 7'y are congruent
respectively to two sides and the included angle of triangle T's” and “Tri-
angles T, and T, are congruent” are equivalent propositions.

NOTATION: “If and only if”” is abbreviated as iff or symbolized by <.

The truth of an implication is usually referred to as validity; that is, an
implication is said to be valid if its conclusion follows from its hypothesis. The
fact that an implication is valid does not insure the truth of its conclusion; for
this we also need the truth of the hypothesis. A deductive argument is simply a
concatenation of implications, in which the conclusion of each implication is at
least part of the hypothesis of the next, and the argument is valid if and only if
each implication is valid. The truth of its conclusion, however, also requires the
truth of the initial hypothesis. Thus, a deductive argument is simply a process
for guaranteeing that the truth of a certain statement (conclusion) follows from
the truth of one or more other statements (hypotheses). The establishment of
the truth of a proposition by making it the conclusion of a deductive argument
whose initial hypothesis is taken as true is called a direct proof of the proposition.

There is another type of proof based on both deduction and the negation
of a proposition. Since a true hypothesis and a valid argument together must
yield a true conclusion, then a valid argument that yields a false conclusion must
proceed from a false hypothesis. Hence we may also prove the truth of a proposi-
tion p by forming its negation, ~p, and using ~p as the hypothesis of a valid
argument whose conclusion is false. This implies ~p must be false, and hence
p must be true by the way we defined negation. This procedure is known
as proof by contradiction or indirect proof. The direct and indirect methods
of proof are exemplified by the deductive arguments used throughout the
remainder of this book.

EXERCISES
1. Give the negation and a contrary of each of the following propositions:

(a) The flower is purple.
(b) All freshmen are flowers.
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(c) Some birds are fire engines.
(d) The development of the number systems is motivated exclusively by a con-
sideration of algebraic equations.
(e) Several meetings have been held to discuss the renovation of the schedule.
(f) If rabbits eat carrots, then they have good eyesight.
(g) If an algebraic expression is a quadratic equation, then it generates a conic
section.
2. In each of the following conditionals, state the hypothesis, the conclusion, and the
converse:
(a) If all flying things are airplanes, then birds are airplanes.
(b) p is true if ¢ is true.
(c) The existence of a propositional function implies the existence of an infinity
of propositions.
(d) Truth implies truth.
(e) We will be able to sleep through this lecture if nobody asks a question.
(f) If there are sufficient funds and if the carpenters do not strike, the entire build-
ing will be renovated by September.
(g) Every chipmunk is a fish.
(h) No snowmen are purple.
3. Let the propositions p and ¢ be “Roses are red” and *“Snowmen like carrots,”
respectively. Translate into acceptable English:
@ p=gqg ®) g=p ©pe=g
d) (~p)=gqg ) p= (~q) ® (~q9)= (~p)
4. Follow the directions of Exercise 3 for the propositions
p: “Several errors have been made,” and
q: “All the answers are incorrect.”

2. THE AXIOMATIC METHOD

Any body of knowledge is organized and transmitted basically by means of the
principles outlined in the previous section, and mathematics is no exception.
Deductive reasoning, however, only supplies the method of procedure; it gives
no indication of where to start. The quest for this starting point leads naturally
to an investigation of meanings of words. In order to arrive at a common under-
standing and remove all ambiguity from future discussion it is necessary to define
the words we use. The concept of definition involves the statement of a character-
istic property; that is, if we are to define a word, we must state a condition such
that,

(1) given any object whatsoever, we can determine whether or not that
object satisfies the condition, and

(2) the word being defined is attached to an object if and only if it satisfies
that condition.

What we are doing, essentially, is developing a system of name tags for ideas.
Thus, to “define” a word by merely giving a synonym is either meaningless or
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useless. If we do not know what the synonym means, we have no criterion by
which to apply the name; if we do know what the synonym means, it is a per-
fectly good name for that idea and there is no need to confuse the issue by
supplying another.

Of course, just as one cannot learn Arabic solely by using an all-Arabic
dictionary, so it is not possible to define every word we use. Any attempt to do
this would simply result in a circular set of statements, each dependent on
another, and hence all meaningless. Therefore, we must begin any logical
undertaking with one or more undefined terms. Similarly, not every statement
can be proved from previous ones. We must have some initial hypotheses, state-
ments assumed true without proof. These are usually called axioms or postulates.

Euclid recognized these principles and put them to use in his Elements. He
regarded geometry as a description of the physical world and attempted to
systematize this description by placing it on a deductive foundation. He defined
all the technical terms used, but in doing so employed other words such as part,
length, equal, etc., without defining them. He also distinguished between axioms
and postulates, and in this respect was in agreement with the majority of early
Greek scholars, although the precise nature of this distinction was open to
dispute. Euclid’s axioms were statements of common ideas that he regarded
as obvious, such as “The whole is greater than any of its parts” and “If equals
be subtracted from equals, the remainders are equal,” whereas his postulates
were statements dealing explicitly with geometry, such as “A straight line can
be drawn from any point to any point™ and “All right angles are equal.” These
latter statements he regarded as idealizations of physical truths and therefore
immutable, in a sense. They were looked upon as true observations about the
nature of the physical world rather than as arbitrary assumptions. The Elements
typify what has come to be known as material axiomatics.

Contrasted with material axiomatics is the modern deductive approach,
called formal axiomatics, based upon assumptions that are not considered to
have any a priori truth value. This type of system begins with some undefined
terms, words that have no meaning at all in the system and behave much the
same as algebraic symbols. With these words some propositions (actually,
propositional functions) are constructed, and although they have no truth value
as such, they are assigned the value frue for use within the system. These are the
axioms or postulates. (The two words are interchangeable in formal axiomatics.)
From there on, all new words used in the system are defined in terms of the un-
defined terms, and all subsequent statements are proved deductively from the
axioms. The proved statements are called theorems. This type of structure is
called an abstract mathematical system, and the totality of such systems consti-
tutes pure mathematics.

Lest we be accused of saying that all mathematicians are either psychic or
phenomenally lucky, let us clarify this approach a bit. Mathematicians do not
choose arbitrary symbols and statements at random and just happen to come
upon useful systems most of the time; they often have in mind a concrete system



8 THE FOUNDATIONS OF MATHEMATICS

that they are attempting to describe, just as Euclid did. The essential difference
is that they recognize that the concrete system they are describing does not pre-
determine the abstract system they are formulating. The postulates are not propo-
sitions that are true by nature, but propositional functions that have no intrinsic
truth value and are considered as true in the system merely by agreement. The
abstract system is, in general, subject to many interpretations of which its proto-
type is only one. An interpretation is called a model, and is formed by assigning
meanings to the undefined terms and then verifying the truth of the postulates
with respect to these meanings. Applied mathematics is the study of models of
pure mathematical systems.

EXAMPLE: Let us consider the following system:
Undefined terms: bird, cage, belong to.

Axioms: 1. There exist at least one bird and at least one cage.

2. If X and Y are distinct birds, then there is at least one cage that belongs
to both of them.

3. If X and Y are distinct birds, then there is at most one cage that belongs
to both of them.

4. If x and y are distinct cages, then there is at least one bird that belongs
to both of them.

5. At least three birds belong to any cage.

6. Not all birds belong to the same cage.

This is an abstract mathematical system which we shall call the axiom
system S.

Now let us examine a model of S. Let 4, B, C, D, E, F, and G be brass
rings connected by wires 1, 2, 3, 4, 5, 6, and 7 in the following manner:

Wire 1 connects rings 4, B, and C.
Wire 2 connects rings 4, D, and E.
Wire 3 connects rings 4, F, and G.
Wire 4 connects rings B, D, and F.
Wire 5 connects rings B, E, and G.
Wire 6 connects rings C, D, and G.
Wire 7 connects rings C, E, and F.
(See Figure 1.)

If we interpret bird, cage, and belong to as brass ring, wire, and be attached to,
respectively, it is fairly easy to see that all the axioms of S are satisfied, and
hence this is a physical model of S.

A final remark regarding terminology is in order. The undefined terms of
our example S were deliberately chosen for their obscurity to emphasize the fact
that they have no meaning other than the significance imparted to them by the



