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Preface

Universal scaling behavior is an attractive feature in statistical physics be-
cause a wide range of models can be classified purely in terms of their col-
lective behavior due to a diverging correlation length. Scaling phenomenon
has been observed in many branches of physics, chemistry, biology, econ-
omy etc., most frequently by critical phase transitions and surface growth.
Nonequilibrium phase transitions appear, for example, in models of

origin of life [Cardozo and Fontanari (2006b)]

biological control systems [Kiyono et al. (2005)]

enzyme biology [Berry (2003)]

brain [Werner (2007)]

population [Albano (1994)]

spatiotemporal intermittency [Jabeen and Gupte (2005)]
socio-physics [Baronchelli et al. (2007)]

epidemics [Ligget (1985); Mollison (1977)]

catalysis [Ziff et al. (1986); yin Hua (2004)]

itinerant electron systems [Feldman (2005)]

cooperative transport [Havlin and ben Avraham (1987); Chowd-
hury et al. (2000)]

e plasma physics [Knapek et al. (2007)]
e stock-prize fluctuations and markets [Bouchaud and Georges

(1990); Kiyono et al. (2006)]
collision of solids [Kun and Hermann (1999)]

The concept of self-organized critical (SOC) phenomena has been intro-
duced some time ago [Bak et al. (1987)] to explain the frequent occurrence
of scaling laws experienced in nature. The term SOC usually refers to
a mechanism of slow energy accumulation and fast energy redistribution,
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driving a system toward a critical state. The prototype of SOC systems
is the sand-pile model in which particles are randomly dropped onto a
two dimensional lattice and the sand is redistributed by fast avalanches.
Therefore, in SOC models, instead of tuning the parameters, an inherent
mechanism is responsible for driving it to criticality. SOC mechanism has
been proposed to model

earthquakes [Bak and Tang (1989); Sornette (1989)]

the evolution of biological systems [Bak and Sneppen (1993)]
solar flare occurrence [Lu and Hamilton (1991)]

fluctuations in confined plasma [Politzer (2000)]

snow avalanches [Faillettaz et al. (2004)]

rainfall [Peters et al. (2002)]

However, SOC critical classes can be shown to be equivalent to those of the
ordinary critical ones by identifying the control parameters and the bound-
ary conditions properly [Vespignani and Zapperi (1997); Dickman et al.
(1998); Dickman (2002a)], therefore I shall discuss the critical behavior of
SOC models briefly in Sect. 6.10.

Diverging correlation length — necessary to change the global symme-
try at a second order phase transition point — and scaling may also occur
away from the critical point. Naturally, in a fully ordered state (below the
ordering temperature) the correlation length is infinite. If the interactions
of the system is such that reaching this state requires diverging time, one
finds dynamical scaling near that point. This happens usually in case of
multi-particle, reaction-diffusion systems in the ordered phase (experimen-
tally observed in [Kroon et al. (1993)]). In quantum matter, near absolute
zero temperature thermal equilibration can be obstructed in the case of
topological ordered ground states, where only the slow dynamical relax-
ation of defects pairs — via annihilation-diffusion — can occur [Chamon
(2005)]. By quenching magnets to zero, temperate domain coarsening oc-
curs by power laws since topological defects such as interfaces or vortices
slow down the dynamics [Bray (1994)].

Rough surfaces and interfaces can also exhibit temporal and spatial
scaling if the correlation length and time diverges. They are ubiquitous in
nature and from a technological point of view the control of their rough-
ness is becoming critical for applications in fields such as micro-electronics,
image formation, surface coating or thin film growth [Chow (2000)]. Un-
derstanding the fundamental laws driving tumor development is one of the
biggest challenges of contemporary science. Internal dynamics of a tumor
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reveals itself in a number of phenomena, one of the most obvious ones being
the growth [Brutovsky et al. (2006); Martins et al. (2007)].

Earlier most of the models were investigated on regular lattice type of
systems (approximating a smooth field theory by continuum limit). It is
well known that for systems with translational symmetry (like a lattice) the
influence of underlying structure becomes negligible at the critical point (ie.
when the correlation length is much larger than the cell spacing). Note that
in systems with non-integer (fractal) dimensions the translational symmetry
is replaced by discrete scale invariance and the topological details of the
generating cell are present at any scale. As the consequence, log-periodic
corrections to scaling — described by complex exponents — occur [Sornette
(1998)], which I shall not discuss here. The advantage of lattice realizations
is that they are simpler to handle than models in continuum space, e.g.,
they sometimes allow for exact results and are easier to be implemented
in a computer. Furthermore, a bunch of emerging techniques may now be
applied to lattice systems, including nonequilibrium statistical field theory.
A general amazing result from these studies is that lattice models often
capture the essentials of

social organisms [Antal et al. (2001); Washenberger et al. (2007)]
epidemics [Hinrichsen (2007a)]

glasses [Chamon (2005)]

electrical circuits

transport [Ez-Zahraouy et al. (2006)]

hydrodynamics [Diez-Minguito et al. (2005)]

colloids, computational neuro-science [Furtado and Copelli (2006)]
botany [K. A and Peak (2006)]

In the past few years, the interest focused on the research of complex scale-
free networks [Albert and Barabdsi (2002); Barabési (2002); Dorogovtsev
and Mendes (2003)]. Recently the dynamics and the phase transitions of
network systems came under study [Aldana and Larralde (2004)]. Contrary
to the regular lattices universality in network models is not so well defined,
usually it depends on the underlying topology, therefore I shall not discuss it
in this book. A very recent analytical study has shown that the asymptotics
of random walks on uncorrelated random networks is essentially the same
as that for regular Bethe lattices [Samukhin et al. (2007 )]

Dynamical extensions of static universality classes — established in
equilibrium — are the simplest nonequilibrium models systems, but beyond
that critical phenomena, with classes have been explored so far [Marro and
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Dickman (1999); Grassberger (1996); Hinrichsen (2000a)]. While the the-
ory of phase transitions is quite well understood in thermodynamic equi-
librium, its research in nonequilibrium is rather new. In general phase
transitions, scaling and universality retain most of the fundamental con-
cepts of equilibrium models. The basic ingredients affecting universality
classes are again the collective behavior of systems, the symmetries, the
conservation laws and the spatial dimensions as described by renormal-
ization group (RG) theory. Besides these, several new factors have also
been identified recently. Low dimensional systems are of primary inter-
est because the fluctuation effects are relevant, hence the mean-field type
of description is not valid. In the past decades, this field of research
grew very quickly and now we are faced with a zoo of models, univer-
sality classes, strange notations and abbreviations. This book aims to help
newcomers as well as researchers to navigate in the literature by system-
atically reviewing most of the explored universality classes. I define mod-
els by their field theory (when it is available), show their symmetries or
other important features and list the critical exponents and scaling rela-
tions.

Nonequilibrium systems can be classified into two categories:

(a) Systems which do have a hermitian Hamiltonian and whose station-
ary states are given by the proper Gibbs-Boltzmann distribution. However,
they are prepared in an initial condition which is far from the stationary
state and sometimes, in the thermodynamic limit, the system may never
reach true equilibrium. These nonequilibrium systems include, for exam-
ple, phase ordering systems, spin glasses, glasses etc. I show the scaling
behavior of the prototypes of such systems in the second chapter (Out of
Equilibrium Classes). These are defined by the addition of simple dynamics
to static models. The initial condition can be regarded as a boundary con-
dition in the time direction, hence these models exhibit strong resemblance
to static models near surfaces. They are discussed in Chapter 2.

(b) Systems without a hermitian Hamiltonian defined by transition
rates, which do not satisfy the detailed balance condition (the local time
reversal symmetry is broken). They may or may not have a steady state
and even if they have one, it is not a Gibbs one. Such models can be created
by combining different dynamics or by generating currents in them exter-
nally. In some cases, their critical behavior is insensitive to such changes
and these are discussed in Chapter 2. There are also systems, which are not
related to equilibrium models, in the simplest case these are lattice Markov
processes of interacting particle systems [Ligget (1985)]. These are referred
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here as “genuinely nonequilibrium systems” and are discussed in the rest
of the work.

The discussion of latter type of classes is split into five parts: In Chap-
ter 3, transition classes of models possessing fluctuating ordered states are
provided. There are not too many of them known yet, but the exploration
of the phase transitions of current driven systems attracts much interest
nowadays. In Chapter 4, phase transition classes of models with absorb-
ing states are presented. These are usually reaction-diffusion (RD) type
of models, but sometimes they are defined by spin systems or via a coarse
grained Langevin equation. In Chapter 5, I briefly touch on the point
of discontinuous nonequilibrium phase transitions and tricritical phenom-
ena, especially because dynamical scaling may occur in such nonequilibrium
cases. In Chapter 6, I list known classes, which occur by combinations of
basic genuine class processes. These models are coupled, multi-component
RD systems. While the former three chapters are related to critical phe-
nomena near to extinction, in Chapter 7, 1 discuss universality classes in
systems where site variables are non-vanishing in surface growth models.
The bosonic field theoretical description is applicable for them. I point out
mapping between growth and RD systems when it is known.

I define a critical universality class by the complete set of exponents at
the phase transition. Therefore, different dynamics split up the basic static
classes of homogeneous systems. I emphasize the role of symmetries and
boundary conditions which affect these classes. I also point out very recent
evidence, according to which in low-dimensional systems, symmetries are
not necessarily the most relevant factors of universality classes. Although
the systems covered here might prove to be artificial to experimentalists
or to application-oriented people they constitute the fundamental blocks of
understanding of nonequilibrium critical phenomena. Note that even the
understanding of models so simple runs into tremendous difficulties very
often.

I shall not discuss the critical behavior of quantum systems [Récz (2002)]
and just briefly mention experimental realizations. However, it is well
known that a quantum phase transition (occurring at T' = 0 due to quan-
tum fluctuations) in d space dimensions can be mapped onto a classical
(finite temperature) transition at d+ Z dimensions (where Z (see Sect. 1.3)
is the dynamical exponent, and Z = 1in space-time isotropic systems). The
effect of boundary conditions in static models is reviewed elsewhere. The
detailed discussion of the applied methods is also omitted due to the lack of
space, although in Sect. 1.6 I give a brief introduction to the field theoretical
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approach in the first chapter. This section shows the formalism for defining
nonequilibrium models. This is necessary to express the symmetry rela-
tions affecting critical behavior. The detailed discussion of renormalization
group solutions is not provided in this book, and only mean-field theoretical
derivations and scaling arguments are shown in some important cases.

Researchers from other branches of science are provided with a kind
of catalog of classes in which they can identify their models and find cor-
responding theories. The classification of phase transition classes of one-
component, bosonic reaction-diffusion models has been attempted very re-
cently [Elgart and Kamenev (2006)]. This is based on topological portraits
of “zero energy” lines of the reaction Hamiltonians in the phase-space, sim-
ilarly to the Ginzburg-Landau potential minima in the case of equilibrium
systems. Although the predictions of this scheme is not always in agree-
ment with the results of other methods, especially in case of non-bosonic
models (with topological site restrictions) it gives a constructive, organiza-
tional view for the zoo of nonequilibrium models and classes. I discuss this
new method in Sect. 1.6.1 and the corresponding phase portraits will be
shown in the field theoretical introduction of the reaction-diffusion classes.

Another very recent advance in this field is the recognition of more
general scale transformations than mere rescaling. Similar to the confor-
mal invariance in equilibrium systems, the concept of local scale invariance
(LSI) has been introduced [Henkel (2002)]. I provide LSI scaling exponents
and forms determined recently for some basic models and discuss their lim-
itations.

Besides scaling exponents and scaling relations, there are many other
interesting features of universality classes like scaling functions, extremal
statistics, finite size effects, fluctuation-dissipation theory etc., which I do
not discuss in this review. Still, I believe the material shown provides a
useful frame for orientation in this huge field. There is no general the-
ory of nonequilibrium phase transitions, hence a widespread overview of
known classes can help theorists deduce the relevant factors determining
universality classes.

There exists some recent, similar reviews in the literature. One of them
is by [Marro and Dickman (1999)], which gives a pedagogical introduction
to driven lattice gas systems and to fundamental particle systems with
absorbing states. The other one [Hinrichsen (2000a)] focuses more on basic
absorbing state phase transitions, methods and experimental realizations.
A more technically detailed review on universal scaling of basic models
exhibiting absorbing phase transitions supplements the second one [Liibeck
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(2004)], focusing on scaling functions, external fields, crossovers and upper-
critical behavior.

This book is based on a former review article by the author, which con-
sidered nonequilibrium universality classes systematically [C)dor (2004a)].
That overview aimed to give a comprehensive overview of known nonequi-
librium dynamical classes, incorporating surface growth classes, classes of
spin models, percolation and multi-component system classes and damage
spreading behavior. Relations and mappings of the corresponding models
were pointed out. Now effects of anisotropy, boundary conditions, long-
range interactions, external fields and disorder are shown more systemati-
cally for each class. The crossover between classes is emphasized by boldface
letters. This book provides an updated and extended review (as a result
of lack of the size limitation of an article). The extensions includes local
scale invariance, phase space topologies, non-perturbative renormalization
group etc.

To help navigating in the text and in the literature I provided a list
of the most common abbreviations in the appendix. Naturally this review
cannot be complete and I apologize for any references I have inadvertently
omitted.

Géza Odor
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Chapter 1

Introduction

1.1 Critical exponents of equilibrium (thermal) systems

In this section I briefly summarize the definition of well known critical expo-
nents of homogeneous equilibrium systems and show some scaling relations
[Fisher (1967); Kadanoff et al. (1967); Stanley (1971); Ma (1976); Amit
(1984)]. The basic thermal exponents (denoted by subscript ‘H’ to avoid
confusion with the some nonequilibrium ones defined later) are defined via
the scaling laws:

en o< ot (T = T/T) ™" - 1) , (1.1)
mo (T.-T)" , (1.2)
xx|T-TJ™", (1.3)
m o HY/%H | (1.4)

G (r) oc r2=d-ms (1.5)
e (1.6)

Here cg denotes the specific heat, m the order parameter, x the suscep-
tibility and £ the correlation length. Note that the anomalous dimension
exponent in the spatial two-point correlation scaling-law is denoted by 7
in nonequilibrium systems — where L corresponds to perpendicular to the
time direction — therefore in the time being I shall use this notation. The
presence of another degree of freedom besides the temperature 7', like a
(small) external field (labeled by H), leads to other interesting power laws
when H — 0. The d present in the expression of two-point correlation func-
tion G2 (7) is the space dimension of the system.

Some laws are valid both to the right and to the left of the critical
point; the values of the relative proportionality constants, or amplitudes,



