EATCS A
Monographs on Theoretical Computer Science

Volume 15

Editors: W.Brauer G.Rozenberg ASalomaa

Seppo Sippu
Eljas Soisalon-Soininen

Parsing Theory

Volume 1
Languages and Parsing

Springer-Verlag
:2‘ P) & e 3)

Seppo Sippu |
Eljas Soisalon-Soininen

Parsing Theory

Volume 1 |
Languages and Parsing

With 55 Fi

Springer-Verlag Beilin Heidelberg New York
London Paris Tokyo

/fm*‘k}i&a \?J
dtE-TH LEg-AE

Aduthors

Professor S. Sippu

Department of Computer Science, University of Jyviskyli
Seminaarinkatu 15,"SF-40100 Jyvaskyld, Finland

Professor E. Soisalon-Soininen
Department of Computer Science, University of Helsinki
Teollisuuskatu 23, SF-00510 Helsinki, I—‘inl;md

Editors .

Prof. Dr. Wilfried Brauer

Institut fiir Informatik, Technische Universitit Miinchen
Arcisstr. 21, D-8000 Miinchen 2, Germany

Prof. Dr. Grzegorz Rozenberg

Institute of Applied Mathematics and Computer Science
University ‘of Leiden, Niels-Bohr-Weg 1. P.O. Box 9512
NL-2300 RA Leiden, The Netherlands

Prof. Dr. Arto Salomaa
Department of Mathematics, University of Turku
SF-20500 Turku 50, Finland

ISBN 3-540-13720-3 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-13720-3 Springer-Verlag New York Heidelberg Berlin

Library of Congress Cataloging-in-Publication Data

Sippu. Seppo. 1950 -

Parsing theory , Seppo Sippu. Eljas Scisalon-Soininen.

p. ~ em. - (EATCS monographs on theoretical computer science ; v. 15)
Bibliography: p.

Included index.

Contents: v. |. Languages and parsing.

ISBN 0-387-13720-3 (LS. v, 1)

1. Parsing (Computer grammar) 2. Formal languages. 1. Soisalon-
Soininen. Eljas. 1949 11 Title. 1. Series

QA267.3.859 1988 SI1.3-dc 19 8R-20091 CIP

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting. re-use of il-
lustrations, recitation, broadeasting. reproduction on microfilms or in other ways, and
storage in data banks. Duplication of this publication or parts thereof is only permitted
under the provisions of the German Copyright Law of Septemiber 9, 1965, in its version of
June 24, 1985, and a copyright fee must always be paid. Violations fall under the
prosecution act of the Gerinan Copyright Law,

i Springer-Verlag Berlin Heidelberg 1988
Reprited by World Publishing Corporation, Beijing, 19053

{ov chistithution and sale e The Feople's Republic of Chima only
LSRN 7 nose 62y

noos 'd
nomnwipeded ‘D 1BAIN ‘W SPUO[N SIUBWMEBH [

udAg 'S Aolg ‘N o[Isny "D pleog AIOSIApY

rRWOlRS 'Y Slaquozoy ‘D Ioneig A\ SI10UpPH

Sl al'unlo,\
souaidg 19ndwo) [eonatoay | uo sydeifouop
' SOLVH,

EATCS Monographs on Theoretical Computer Science

Vol. 1: K. Mehlhorn: Data Structures and Algorithms 1: Sorting and
Searching. XIV, 336 pages, 87 figs. 1984.

Vol. 2: KT Mehlhorn: Data Structures and Algorithms 2: Graph
Algorithms and NP-Completeness. XII, 260 pages, 54 figs. 1984.

Vol. 3: K. Mehlhorn: Data Structures and Algorithms 3: Multi-
dimensional Searching and Computational Geometry XII,
284 pages, 134 figs. 1984,

Vol. 4: W. Reisig: Petri Nets. An Introduction. X, 161 pages,
111 figs. 1985.

Vol. 5: W. Kuich, A. Salomaa: Semirings, Automata, Languages.
IX, 374 pages, 23 figs. 1986.

Vol. 6: H. Ehrig, B. Mahr: Fundamentals of Algebraic Specifica-
tion 1. Equations and Initial Semantics. Xi. 321 pages. 1985.

Vol. 7: F. Gécseg: Products of Automata. VIII, 107 pages,
18 figs. 1986.

Vol. 8: F. Kroger: Tempdra] Logic of Programs. VIII, 148 pages.
1987.

Vol. 9: K. Weihrauch: Computability. X, 517 pages. 1987.

Vol. 10: H. Edelsbrunner: Algorithms in Combinatorial Geometry.
XV, 423 pages, 93 figs. 1987.

Vol. 11:], L. Balcazar, J. Diaz, J. Gabarro: Structural
Complexity 1. IX, 191 pages, 57 figs. 1988.

Vol. 12: J. Berstel, C. Reutenauer: Rational qenes and Thexr Lan-
guages. VIII, 151 pages. 1988.

Vol. 13: E. Best, C. Fernandez C.: Nonsequential Processes. -
IX, 112 pages, 44 figs. 1988.

Vol. 14: M. Jantzen: Confluent String Rewriting. Approx.
140 pages. 1988.

Vol. 15: S. Sippu, E. Soisalon-Soininen: Parsing Theory, Vol. I:
Languages and Parsing. VIII, 228 pages, 55 figs. 1988.

Preface

The theory of parsing is an important application area of the theory of
formal languages and automata. The evolution of modern high-level
programming languages created a need for a general and theoretically
clean methodology for writing compilers for these languages. [t was
perceived that the compilation process had to be “syntax-directed”,
that is, the functioning of a programming language compiler had to be
defined completely by the underlying formal syntax of the language. A
. program text to be compiled is “parsed™ according to the syntax of the
language, and the object code for the program is generated according
to the semantics attached to the parsed syntactic entities.

Context-free grammars were soon found to be the most convenient
formalism for describing the syntax of programming languages, and
accordingly methods for parsing context-free languages were devel-
oped. Practical considerations led to the definition of various kinds of
restricted context-free grammars that are parsable by means of
efficient deterministic linear-time algorithms.

Today, the theory of parsing is a well-established area of computer
science. The most notable individual achievements in the area date
from as early as the 1960s. These include the two major deterministic
parsing methods now used in programming language compilers:
LR (k) parsing and LL (k) parsing. However, since the invention of
these methods, a great deal of research has been done on their analvsis
and on the practical issues involved in implementing parsers. As a
result of this research, constructing a parser for a programming
language is no longer an ad hoc task bu: a completely automatic
process executed by a compiler writing system.

This monograph is intended as an /p-to-date reference work on.the
theory of deterministic parsing of context-free grammars. The material
included is treated in depth, with emphasis on the LR (k) and LL (k)
methods, which are developed in a unitorm way. Special attention is
paid to the efficient implementation of LR (k) and LL (k) parsers.
Construction algorithms for parsers are derived from general graph-
theoretic methods. and complexity questions about parsable gram-
mars are analyzed.

The treatment is mathematical in spirit, and contributes to the
analysis of algorithms. The work tries to be self-contained in that
relevant results from the general theory of formal languages and
computational complexity are cited explicitly in the text (usually as
propositions). For some of these results, a proof is also provided.

Vi Preface

“Parsing Theory™ appears in two volumes, “Volume I: Languages
and Parsing”™ (Chapters | to 5) and “Volume 1I: LR (k) and LL (k)
Parsing”™ (Chapters 6 to 10). The two volumes form an integrated
work, with chapters, theorems, iemmas, etc. numbered consecutively.

Volume [provides an introduction to the basic concepts of
languages and parsing. It also contains the relevant inathematical and
computer science background needed in the development of the theory
of deterministic parsing. In Chapter 1, concepts from discrete math-
ematics, formal languages and computational complexity are re-
viewed. Chapter 2 contains the basic algorithms on relations and
graphs needed later in constructing parsers. In Chapter 3, the main
~lassical results on regular languages are reviewed, with emphasis on
the complexity of algorithms. Chapter 4 is a short introduction to
context-free grammars and related concepts. Volumel ends with
Chapter 5, which introduces the concepts of a pushdewn automaton,
pushdown transducer, left parser, right parser, strong LL (k) parser,
and simple precedence parser. In this chapter, the emphasis is on the
analysis of strong LL (k) parsing and on the efficient construction and
implementation of strong LL (1) parsers.

Volume Il contains a thorough treatment of the theory of LR (k)and
LL (k) parsing. The topics covered are: LR (k), LALR (k), and SLR (k)
parsers and grammars (Chapter 6), construction and implementation
of LR (1) parsers (Chapter 7), LL (k) parsers and grammars, and non-
left-recursive grammatical covers (Chapter 8), syntax error recovery
and reporting (Chapter 9), and the complexity of testing grammars for
parsability (Chapter 10).

This work is intended to- be used as a textbook at graduate and
senior undergraduate levels. A suitable background for a student
would be an elementary knowledge of formal lianguage theory,
complexity, data structures and analysis of algorithms.

Some of the material has been used in a4 one-semester course on
parsing theory at the University of Helsinki. A one-semester course on
‘the basic theory of languages and parsing can be taught from
Volume I. The whole material in both volumes can perhaps most
conveniently be covered in an advanced two-semester course on
parsing theory.

Numerous exercises are provided at the end of each chapter The
bibliographic notes attempt to point to a published source for exercises
that are more difficult than average or that cover topics not discussed
in the text.

Jyviskyld and Helsinki, March 1988 Seppo Sippu
Eljas Soisalon-Soininen

Acknowledgements
The work was supported by the Academy of Finland, the Finnish
Cultural Foundation, and the Ministry of Education of Finland.

Contents

1. Elements of Language Theory 1
1.1 Mathematical Preliminaries 1
1.2 Languages 6
1.3 Random Access Machines 12
1.4 Decision Problems. 14
1.5 Computational Complexity § s e w3 8 g ® 8 19
1.6 Rewriting Systems., 24
Exercises 30
Bibliographic Notes 35
2. Algorithms on Graphs 37
2.1 Basic Algorithms 37
2.2 Finding Strongly Connected Components.39
2.3 Computing Functions Defined on Graphs 48
2.4 Computing Relational Expressions. 53
Exercises 60
Bibliographic Notes 64
3. Regular Languages ST, 65
3.1 Regular Expressions 65
3.2 Finite Automata 72
3.3 Regular Grammars 83
3.4 Deterministic Finite Automata 87
3.5 Decision Problems on Regular-Languages 91
3.6 Applications to Lexical Analysis. 97
Exercises 106
Bibliographic Notes 113
4. Context-free Languages 115
4.1 Context-free Grammars 115
4.2 Leftmost and Rightmost Derivations. 118
4.3 Ambiguity of Grammars 122
4.4 Useless and Nullable Symbols. 129
4.5 Canonical Two-form Grammars. 133

4.6 Derivational Complexity 136

VIII Contents

4.7 Context-free Language Recognition . . .
Exercises R
Bibliographic Noles

S. Parsing

5.1 Pushdown Automata :
5.2 Left Parsers and Right Parsers
5.3 Strong LL (k) Parsing . . .

5.4 Strong LL (k) Grammars

5.5 Construction of Strong LL (1) Parsers .

5.6 Implementation of Strong LL (1) Parsers . .

5.7 Simple Preuedence Parsing

Exercises . . . v § 5§ B oo & § F @ % &

Bibliographic Notes

Bibliography to Volume I

Index to Volumel

. 144

. 147

. 151

. 153
. 154

160

.. 170
. 178

. 185

. 193

. 199

.. 206

. 214

. 217

.22

1. Elements of Language Theory

In this chapter we shall review the mathematical and computer science background
on which the presentation in this book is based. We shall discuss the elements of
discrete mathematics and formal language theory, emphasizing those issues that are
of importance from the point of view of context-free parsine We shall devote a
considerable part of this chapter to matters such as random access machines and
computational complexity. These will be relevant later when we derive efficient
algorithms for parsing theoretic problems or prove lower bounds for the complexity
of these problems. In this chapter we shall also discuss a general class of formal
language descriptors called “rewriting systems” or “semi-Thue systems”. Later in
the book we shall consider various language descriptors and language recognizers
as special cases of a general rewriting system. As this approach is somewhat
unconventional, we advise even the experienced reader to go through the definitions
given in this chapter if he or she wishes to appreciate fully the presentation in this
book. -

The first two sections of this chapter contain a brief introduction to relations,
directed graphs, trees, functions, countable sets, monoids, strings, homomorphisms
and languages. Section 1.3 deals with the abstract model of a computer on which the
algorithms presented in this book are intended to run. This model coincides with
the conventional random access machine model except that we allow nondetermin-
istic programs. Section 1.4 deals with decision problems and solvability, and
Section 1.5 discusses the complexity of programs in our model of conrputation.
Finally, Section 1.6 defines a general rewriting system and related concepts such as
derivations, time complexity, and space complexity in rewriting systems.

1.1 Mathematical Preliminaries

Let 4 and B be sets. A relation R from A to B. denoted by R: 4 — B, is any subset of
the Cartesian product of 4 and B, i.e. R € A x B. 4 is the demain and B the range of
R. R is a relation on A if A= B. If a pair (a, b) is in R, we say that a is R-related to b,
and write a R b.

If 4’ is a subset of A, we call the set

R(A')={beBlaRb for some ac A'}

2 1. Elements of Language Theory

the image of A" under R. In the case of a singleton set {¢} we may write R(a) for
R({a}). _
The relation R™* from B to A4 defined by
R~ = ={(b,a)e Bx A|laRb}

is called the inverse of R.
The (relational) product of relations R,: 4 — B and R,: B— C, denoted by R, R,
is the relation from A to C defined by

R R,={(a,c)eAx ClaR,b and bR, ¢ for some be B} .

The relational product R, R, is sometimes called the composition of R, and R, and
may also be denoted by R,°R, (note the reversed order).

Fact 1.1 Multiplication of relations is an associative binary operation on the set of
all relations. That is, for any relations R;: 4 - B,R,: B— Cand R;: C — D, we have

Rl(R2R3)=(R1Rz)R3 v
Thus we may omit the parentheses and write R, R,R;. [
We say that a relation R on a set 4 is

(1) reflexive,ifa R a for all ae A—in other words, R includes the identity relation

id,={(a,a)lae A} on A4;

(2) symmetric, if a R b always 1mpl1es b R a—in other words, R™! = R;

(3) antisymmetric, if aRb and bRa always imply a=b-—in other words,
R 'nRecidy;

(4) rransitive, if a Rb and b R ¢ always imply a R c—in other words, RR € R.
Let R be a relation on A4 and n a natural number. The n'® power of R (or n-fold
product of R). denoted by R", is defined inductively by

(1) R®=id
(2) R"=RR""' forn> 0.

Fact 1.2 a R"bifand only if forsome ag. a,€ A,u=ay.q,=banda;Ra;, for
alli=0,.. ,n—1. O

['he transitive closure of R, denoted by R ™. is the relation on A defined by

R™ = | R

\/
n=1

1.1 Mathematical Preliminarics 3

The reflexive transitive closure of R, denoted by R*, is the relation on 4 defined
by :
R¥= () R". g

n=0

Thus R*=R°UR*" =id,UR" .

Lemma 1.3 Let R be arelation on aset A. Then R* is the smallest transitive relation
on A that includes R, and R* is the smallest reflexive anu transitive relation on A that
includes R. In other words, the following statements hold:

(1) R™ is transitive and R < R™.

(2) R* < R’ whenever R’ is a transitive relation on A such that R < R'.

(3) R* is reflexive and transitive and R = R*.

(4) R* = R’ whenever R’ is a reflexive and transitive relation on A such that
RcR. OO

Let A’ be a subset of 4. Then R (4’), the image of 4’ under R, is called the
positive closure of A’ under R, and R*(A’), the image of A’ under R*, is called the
closure of A’ under R.

A pair G=(A, R} is a directed graph (or graph for short) if A is a set and R is a
relation on 4. The elements of 4 are called nodes (or vertices) of G and the elements
of R edges (or arcs) of G. An edge (a, b) is said to leave node a and to enter node b. If
(a, b) is an edge, node a is called a predecessor of node b, and node b a successor of
node a. In the figures in this book we usually represent an edge (a, b) by an arrow
that goes from a to b (see Figure 1.1).

129

© ® G ®

(a) (b (c) .

Figure 1.1 Examples of graphs. (a) A cyclic directed graph (11, 2.3, 4} (¢1, 2).(2, 1),(2.4).(4, 4 }). (b) An
acvehe directed graph (11, 2,34, 30 100 20000 3003, 20040 30) () Atree (1, 2, 3,4, 5064, ({1, 2),(1,3),
(3,41, 3,5, 130}

A sequence of nodes (aq, ay, . . ., a,),n = 0. isa path of iength nfrom ag toa, 1n a
graph G if for all i=0, ..., n—1{a;, a;,,) is an edge of G.

Fact 1.4 The following statements hold for ail n 2 0 and nodes a, b of a graph
G=(A4, R

4 1. Elements of Language Theory

(1) aR" b if and only if there is a path of length n from a to b in G.
(2) aR*b if and only if there is a path from a to b in G.
(3) aR* bif and only if there is a path of positive length fromato hin G. [

Let G=(4. R) be a graph. The graph (4. R*) is called the transitive closure of G
and is denoted by G *, and the graph (4, R*) is called the reflexive transitive closure
of G and is denoted by G*. A subgraph of G is any graph (4’, R') where 4" = 4 and
R'=(A4"x4)nR.

A cycle is a path of positive length from a node to itself. A graph is said to be
cyelic if it contains a cycle, otherwise it is acyclic.

An acyclic graph is a tree if there is a node r. called the root. such that for any
other node a there is exactly one path from r to «. If (a, b).is an edge of a tree. a is
called the father of b, and b a son of u. If there is a path of positive length from node a
to node h, we say that a is an ancestor of b, and b is a descendant of a. A node having
no sons is called a leaf. A subtree of a tree (4, R) is any tree (4'. R') which is a
subgraph of (4. R) and in which no node is an ancestor of any node in 4 A’. In the
figures, we usually represent a tree so that the root is at the top and the leaves at the
bottom. Sons are connected to their fathers by plain lines (without arrowheads: see
Figure 1.1c).

A relation R on a set A4 is an equiralence if it is reflexive, symmetric and
transitive. The image R(a) of a singleton set {a} under an equivalence R oa A4 is
called the equiralence class of a under R and is denoted by [a]yz. (We may drop the
subscript R and write [a] if there is no ambiguity.)

Fact 1.5 For any equivalence R on a set 4. the set {[a]gzlae 4] is a partition of A,
that is, 4 is the union of the sets [a]z. a€ A, and the intersection of any two distinct
equivalence classes is empty. Conversely, if F is a partition of a set 4, the relation R
defined by

=1(a. b)la, be B for some Bin P}

is an equivalence on 4 with [[a]glae 4} =P.]

A r=lation R on A is a (reflexive) partial order if it is reflexive, antisvmmetric and
transitive. A partial order R on 4 is a toral order (or linear order) if [or ali ¢, be 4
either 2 Rb or b Ra Il R is a partial order, the relation R 29 is called an frrefleive
partiai order. We often use < te denote a partial order. Then < denotes the
corresponding irreflexive partial order < - <" Thus a < b and only if a < b and
a# b. Furthermore, we may denote < "' by > and <! by >

If 7 isapartial order onaset 4, the pair (4. <)is called a partially ordered set. 1f
< is & total order, (A. <) is a totally ordered set.

Ar element ae A is maximal with respect to a partial order < en A ifa < bis
false for all be 4, and minimal if b < ais false for all be 4. I < isatotal order, 4 can
have 2¢ most one maximal element and at mosi one minimal element. When these
exist, we call them the maximum and minimum of A with respect to < and denote
them by max¢ 4 and ming A (or max A and min A4 for short).

1.1 Mathematical Preliminaries 5

A relation ffrom a set A to a set B is a partial function (or partial mapping) if for
all ae A, fla) contains at most one clement. If in addition fis defined for all u e A4, i.e..
if f(a) 1s nonempty for all ae A4, then fis called a (total) function (or mapping).

If f is a partial function and f(a)={b} then we write f(a)=b.

Let f'be a function from A to B and A' a subset of A. The restriction of fto A is
the function f* from A’ to B that agrees with fon 4',i.e..f (a)=f(u)forallae A'. The
restriction f” is sometimes denoted by f14".

A function f from 4 to B is an injection (or one-to-one) if its mversef is a
partial function from B to A4, or, equivalently, if f(a)=f(b) always impliesa=b.fisa
surjection (or onto) if f(.1)= B. A function that is both an injection and a surjection is
called a bijection.

Fact 1.6 The following statements hold for all sets 4, B and C:

(1) id 4 is a bijection from A4 to A.

(2) If fis a bijection from A4 to B, then f~! is a bijection from B to A.

(3) If fis a bijection from 4 to B and ¢ is a bijection from B to C, then fg is a
bijection from 4 to C. {1

Let U be a collection of sets. (U, the “universe”, is assumed to contain all sets
under discussion.) We say that a set A in U is isomorphic with a set B in U, written
A = B. if there is a bijection from A4 to B.

Fact 1.6 immediately implies

Fact 1.7 The set isomorphism = is an equivalence relation on U. [J

The equivalence classes under set isomorphism are called cardinal numbers.
A cardinal number [4]. is denoted by |4]| and is called the size (or cardinality)
of set 4.

A set is finite if it has the same size as the set {1,2, ..., n} for some natural
number n. (We take {1, 2, ..., n} to mean the empty set ¢ if n = 0.) A set is infinite
if it is not finite, ‘

Since | {1,2,.... m}i=1{1,2,... . n}| if and only if m=n, we can denote
i {1,2,...,n}|byn. Thus the size of a finite set is the number of elements in the set.

We say that a set 4 is countable (or denumerabie) if it has the same size as some
subset of N, the set ol all natural numbers. A set is uncountable (or nondenumerable)
if it 15 not countable. A countable infinite set is calied countably infinite.

Proposition 1.8 Any countably infinite set is of size INj|, T

if a set is countable, we can enumerate its elements and write {ag, a,, ... };ifit
is finite, we can write it as {aq.a,...., q,} for some n. -
Lemma 1.9 Let {A,in=0.1,...} be a collection of puirwise disjoint finite sets.

Then the set

U 4,
n=0

6 1. Elements of Language Theory
is countable. [

If A and B are sets, we define
A% ={f|fis a function from Bto 4} .

The elements in A" are called infinite strings (or sequences) over A (or of elements in
A). If fe A% and f(i) = a;, i=0, 1, .. ., we write

J’=(00aala"‘) J

We now show that {0, 1}%, the set of all infinite strings over {0, 1}, is
uncountable. We use a method of proof known as Cantor’s Diagcnal Argument. This
involves assuming that the set is countable and deriving a contradiction. So,
assuming that {0, 1}* is countable, we can write

{Oa I}N = {j‘Oafla LR }
for some infinite strings f; over {0, 1}, ie N. Each f; can be written as
Si=(ai, aiy, ...),

where a;;€ {0, 1} for all je N. Using the “diagonal elements” a;;, ie N, we can then
construct f; another infinite string over {0, | }:

/=(b0‘ bl’ LR))

where the elements b; are defined by

0,ifa;=1;
b“{l,ifa,.,:o;

Now fis not equal to f; for any i € N, because
S =b; # a; =£(i) .
Thus fis not in the set {f,,f,, ...}, which is a contradiction.

We therefore have

Theorem 110 {0.1}™ the ser of ali infinite strings over {0, 1), is uncountable. T

1.2 Languages

A language whose sentences are written using ietters from an alphabet Vis defined
mathematically as a subset of an algebraic structure cailed the “free monoid
generated by V7. In what follows we shall define this structure and other algebraic
concepts needed in the formal treatment of languages.

1.2 Languages 7

A pair (M, -) is a semigroup if M is a set and - is an associative binary operation
on M. That is, - is a function from M x M to M that satisfies

x-(y-z)=(x-y)-z

for all x, y, ze M. Here we have used the infix notation x - y for the image -(x, y). If
no ambiguity arises, we may even abbreviate this to xy. ,
An element ee M is an identity of a semigroup (M,+) if for all xe M

eX=Xe=X .
Lemma 1.11 A semigroup has at most one identity. {1

A triple (M, +, e) is a monoid (or semigroup with identity) if (M, +) is a semigroup
and e its identity. If no ambiguity arises, we may denote a semigroup (M,-) or a
monoid (M, -, e) simply by M.

Fact 1.12 Let 4 be a set and let « be the multiplication of relations on A. Then
(244, .,1d ;) is a monoid. (Here 244 denotes the set of all subsets of 4 x 4, i.e., the
set of all relations on 4) O

Let M be a monoid, x an element of M and n a natural number. The n'® power of
x, denoted by x", is defined inductively by

(1) x°=e¢;

(2) x"=xx""1, for n>0. .

Let A and B be subsets of a monoid (M, -, e). The operation -induces in a natural
way a binary operation - on 2¥, the set of all subsets of M. This binary operation is
defined by

A-B={x-y|xeA and yeB}

for all subsets 4 and B of M.

Fact 1.13 Let (M, -, e) be a monoid. Then (2™, ., {e}), where - is the induced
operation, is also a monoid. [l

The monoid (2¥, -, {e}) is called the monoid induced by (M, -, e) cn 2M.

If A is a subset of M and x is an element of M, we may write (in the induced
monoid) x4 in place of {x}4 and Ax in place of A{x}.

A subset A of a monoid M is closed if for all natural numbers n

Xpy. .., X, €A always implies x; ... x,€A

We take x, ... x, to mean the identity ¢ if n1=0. 4 is positively cfosed if the above
implication is true for all positive a.

Fact 1.14 Let A be a subset of a monoid. Then
(1) A is positively closed if and only if x, ye A always implies xy e 4.

8 1. Elements of Language Theory

(2) A is closed if and only if A is positively closed and contains the
identity e. O ;

Fact 1.15 Let 4 be a closed subset of a monoid (M, -, e). Then (4, -, ¢), where - is the
restriction of the operation of M to A x 4, is also a monoid. [

Such a monoid (A4, -, e) is called a submonoid of (M, -, e).
Let A be any subset of a monoid (M, «, ¢). The positive closure of A4, denoted by
A*.is defined by

The closure of A, denoted by 4%, is defined by

() o
n=0

Here A" means the n™* power of 4 in the induced monoid (2¥, -, {e}). We have

A*=A%v At ={ejuAd"’ .

Lemma 1.16 Let A be a subset of a monoid M. Then A* is the smallest positively
closed subset of M that includes A, and A* is the smallest closed subset of M that
includes A. In other words, the following statements hold:

(1) A* is positively closed and ASA*.

(2) A* =B whenever B is a positively closed subset of M such that A< B.
(3) A* is closed and A< A*.

(4) A* =B whenever B is a closed subset of M such that A<B. [

Note the analogy between Lemmas 1.3 and 1.16.

A subset B of a monoid M generates (or spans) M if B¥* =M. B is then called a
basis (or generator) of M.

If B generates M then, by definition. any x e M hasa representation as a product
X, ...x,of elements x,...,x, of B for some n>0. We say that B generates M
freely if this representation is always unique, ie, for all xe M there is exactly one
natural number n and exactly one sequence of elements x,....x, of B such
that x=x, ... x, M is called a free monoid if it contains a subset B which freely
generates it. '

Lemma 1.17 Ler M be a free monoid. Then M has left and right cancellation, i.e.,
Sforall x, v, ze M

(1) zx=zy implies x=y.
(2) xz=yz implies x=y.]

