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PREFACE

The study of elementary particles and their interactions has brought to
light symmetries and relationships which are nowadays objects of study
in themselves. In this book we have attempted to present these symmetry
principles and their associated conservation laws as a set of interrelated
physical principles, explained in terms of the simplest appropriate
mathematics. Mathematical excursions into the more abstract aspects of
the subject have been avoided; thus in particular, we have not made
explicit use of the formal apparatus of group theory. Similarly we have
omitted all descriptions of the experimental methods by which quoted
results have been obtained.

The level is thus intended to meet the needs of a graduate student
working in particle physics, who wants an accurate but not too abstract
explanation of the principles commonly quoted in the literature of his
subject. It is to be hoped that many such readers would afterwards pro-
gress further with the aid of more advanced literature.

We have drawn heavily on material used by both of us for post-
graduate lectures in Bristol, and we acknowledge the contribution which
these postgraduate classes have made to our own powers of understand-
ing and explanation.

Our thanks are due also to the many colleagues and friends who have
over the years shed light on difficult topics through discussion, and to
Miss Alma Dawes, Miss Margaret James, Miss Anna Love and Mrs Nancy
Thorp who have typed our outpourings. We should also like to thank
Dr J.W. Alcock for assistance with proof-reading and the editorial staff
of the Cambridge University Press for their assistance at all stages.

W.M. Gibson
B.R. Pollard
Bristol, August 1974
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CHAPTER T

INTRODUCTION TO ELEMENTARY PARTICLES

1.1 Perspective

The general field to which this book contributes is known to some as
the Physics of Elementary Particles, to others as High Energy Physics,
and has recently been given the additional name of Sub-nuclear Physics.
These titles are almost synonymous, emphasising respectively the search
for basic components of which matter is made up, the need for high
energies to probe the inner structure of matter, and the fact that the
search leads us deeper than the atomic nucleus.

Many textbooks in this field have presented the elementary paiticles
and their properties, leading from the regularity of these properties to
the gradually uncovered theory of the fundamental interactions. We,
however, take as our subject not the particles themselves but the sym-
metry principles and conservation laws by which their properties are
governed. The understanding of these laws and principles has of course
grown from the experimental study of the actual particles, and this fact
must continually bring us back to the basis of observed fact, as we work
through the essentially mathematical framework of the symmetry
principles and conservation laws.

. 1.2 The particles

A purely empirical classification of the elementary particles may be
made according to mass, with baryons having mass of the order of that
of the proton, leptons having small or zero rest mass, and mesons inter-
mediate mass.

It soon becomes clear, however, that properties other than mass can
lead us to classification schemes of a more fundamental nature. First
we have the question of spin and statistics: the important distinction
here is between particles of half-integral spin which obey Fermi-Dirac
siatistics and particles of zero or integral spin which obey Bose—Einstein
statistics. The former, known as fermions, can be created only as pairs
with corresponding antiparticles, so that the total number of a given
type of fermion is conserved (see §1.4). It is an observed fact, so far
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Table 1.1. Baryons and antibaryons
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Table 1.3. Leptons and antileptons (J = §)

L Helicity

e’ +4 3
Ve £ 1 —3
e' -1 +i
e -1 +3
u +1 +3

1
V“ +l = ;
ut =1 tg
vy -1 +3

unexplained, that all fermions have a non-zero baryon or lepton number,
and are distinguishable from their antiparticles by the opposite values
of these numbers. Bosons, on the other hand, can be created in numbers
which are limited only indirectly by other conservation laws. For
example high energy neutron-proton scattering can be accompanied by
the creation of one, two, three or more pions. The baryons and the
leptons are fermions, while all the strongly interacting mesons are bosons.
The muon, originally classed as a meson on account of its mass, is
classed as a lepton by virtue of its spin 4 and (see later) its weakly
interacting nature.

As has been hinted above, a further useful classification of particles
may be made according to the nature of their interactions. This leads us
to group the baryons and mesons together as hadrons, strongly inter-
acting particles (see §1.3), while the leptons remain apart as weakly
interacting as well as light in mass.

Thé actual known particles are listed, according to the above
principles, in tables 1.1 to 1.3. Quoted in these tables are the values of
the quantum numbers which are discussed in §1.4.

By reason of its relation to the electron and the muon via the weak
interaction, the neutrino (having zero rest-mass) is classed as a lepton,
while the other object of zero rest-mass, the photon, has to be treated
in a class of its own, as the quantum of the electromagnetic field.

1.3 Types of interaction

Different types of interaction between particles may be distinguished
by their values of the coupling constant, a dimensionless number related
to the strength of the interaction, and also to the typical value of cross-
section for processes proceeding via this interaction.

There is an element of convention in the specification of the coupling
constant for different types of interaction, but the general aim is to
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express the interaction energy as a fraction of the mass which is equi-

valent to the range of the interaction.

Strong interaction. For the strong interaction, the mutual energy of
two particles separated by a distance » may be expressed as

2
E = & e~Tle
r

where g is analogous to electric charge, and a is the range of the inter-
- action, expressible as the Compton wavelength of a particle (actually
the pion) of mass m given by

Thus the interaction energy when 7 = a may be put as

2
E=%87%
h
whence
E _g
me* e

This is the quantity generally used as the coupling constant for the
strong interaction; it has value
2
g
he

Electromagnetic interaction. The electromagnetic interaction has a
strength characterised by the quantity e?/he, which is known as the
fine structure constant and has value 1/137. One may describe this
quantity by an argument similar to that used above for the strong inter- -
action; but since there is no unique range for a force obeying an inverse
square law, one must say that e?/hc is the interaction energy of two
electronic charges separated by a general distance 7, expressed as a frac-
tion of the rest-energy of an object which would have Compton wave-
length r. '

Weak interaction. For the weak interaction we have to use the fact that
decay rates lead us to a dimensional measure of interaction strength

G = 14x10% ergem?®

The range is unknown, so to get a dimensionless number it is necessary
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to introduce a standard of length, such as the Compton wavelength of
the pion or of the proton (h/myc). This gives a coupling constant

2
G [mye
he\ h
of order 107° (or 2 x 1077 if one uses h/myc). In fact the true range

may be much smaller than h/mc, in which case the interaction energy
would be greater than the number 107° suggests.

Gravitational interaction. It is of interest to compare the three inter-
actions which are important in elementary particle physics with a fourth,
the gravitational interaction which is far too weak to have any signifi-
cance in this field. If we use G' as the gravitational constant, and con-
sider two electrons, we get a gravitational coupling constant
G'm?
he

P 10—45

a number which amply demonstrates the difference in scale between
gravitational effects on the one hand and electromagnetic or nuclear
effects on the other. .

1.4. Conservation laws

Many of the regularities observed in physics may be expressed as con-
servation laws, each of which states that the magnitude of some quantity
is constant. The most familiar such laws are the laws of conservation of
energy and momentum, which are universally valid, in quantum
mechanics as in classical mechanics. Equally rigid are the laws of con-
servation of angular momentum and of electric charge. Conservation
laws of this type are to be distinguished from those which apply in
idealised systems to which real situations may or may not approximate.
Laws of this latter type arise in the quantum-mechanical description
of the interactions between elementary particles, and the principal ones
will form a basis for our consideration of the symmetry principles.

To set up a few signposts to the topics under review, we may draw
attention to the quantum numbers quoted for the individual particles
in tables 1.1 to 1.3. The baryons, which can undergo transitions into
each other, are given a baryon number B = + 1, while their antiparticles
are given a value B = — 1. The fact that baryons, being fermions, can
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be created and annihilated only in particle-antiparticle pairs is then
expressed by saying that the total baryon number B is conserved. This
law appears to be in the universally valid class.

The other class of fermions, the leptons, appears to obey a similar
but independent law of conservation of total number. For this purpose
we assign lepton numbers L =+ 1 fore*,u*,vand L =—1 fore~,pu",
D. The conservation of lepton number expressed in this way appears to
be as valid as the corresponding conservation of baryon number. It
appears, further, that we may divide the leptons and antileptons into
electronic (e*, », e”, ¥) and muonic (u*, v, u”, ¥,), the numbers of
which are conserved separately. We could thus allocate electronic and
muonic lepton numbers separately, and say that their totals were con-
served separately in all known processes.

The intrinsic parity P of the particles may be linked with the parity
P=(—)" associated with orbital angular momentum / in the relative
motion of the particles, to calculate the total parity of a system. The
law of conservation of parity, stating that total parity is conserved, is
valid for processes which occur through the strong nuclear interaction,
or through the electromagnetic interaction, but is violated in the weak
interaction.

Also giving rise to conditionally obeyed conservation laws, to be
discussed in later chapters of this book, are the quantum numbers listed
as / (isospin), C (charge conjugation symmetry) and G (G-parity), to-
gether with S (strangeness) or Y (hypercharge).



