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Preface

This book is a collection of papers based on activity at the Conference on Con-
formal Dynamics and Hyperbolic Geometry held on October 21st to 23rd, 2010,
in celebration of Linda Keen's seventieth birthday and sponsored by Lehman Col-
lege. the Graduate Center of CUNY and the National Science Foundation.! The
articles presented here fit into a grand strategy, which is to develop mathematical
techniques that provide a foundation for understanding one dimensional real and
complex dynamics. The topics include iteration of rational and holomorphic maps,
the geometry of Fuchsian and Kleinian groups and objects that in the limit have
asymptotically conformal structure including the universal hyperbolic solenoid and
smooth circle expanding maps. Some of the articles go directly to the fractal and
chaotic nature of the dynamical phenomena so richly displayed in many of the dia-
grams given herein and others focus primarily on tools and types of arguments that
come mainly from complex analysis, hyperbolic geometry and Teichmiiller theory.

This book will be useful for beginners and a primary source for young mathe-
maticians looking for interesting research problems. It is therefore a fitting tribute
to Professor Keen, who has done so much to make our CUNY Mathematics Ph.D.
Program a hub of research for students and faculty alike and to support the signif-
icant number of mathematicians around the world who study these topics.

!The conference acknowledges support from three sources: the Graduate Center of CUNY,
Lehman College and the National Science Foundation Grant DMS 1042777.



Contents

Preface vii

Normal families and holomorphic motions over infinite dimensional parameter
spaces
MICHAEL BECK, YUNPING JIANG, AND SUDEB MITRA 1

Elementary moves and the modular group of the compact solenoid
REzZA CHAMANARA AND DRAGOMIR SARIC 11

Combinatorics and topology of the shift locus
LAURA DEMARCO 35

Dynamics of z"™ + A/z"; Why the case n = 2 is crazy
ROBERT L. DEVANEY 49

On holomorphic families of Riemann surfaces
CLIFFORD J. EARLE AND ALBERT MARDEN 67

Circle endomorphisms, dual circles and Thompson’s group
FREDERICK P. GARDINER AND YUNPING JIANG 99

Rational maps with half symmetries, Julia sets, and Multibrot sets in
parameter planes
JUN Hu, FrRANcIscO G. JIMINEZ AND OLEG MUZICIAN 119

The rate of convergence of the hyperbolic density on sequences of domains
Ni1koLA LAKIC AND GREG MARKOWSKY 147

The asymptotic directions of pleating rays in the Maskit embedding
SARA MALONI 159

Hyperbolic Components
JOHN MILNOR WITH AN APPENDIX BY A. POIRIER 183

On barycenter entropy for rational maps
CHRISTIAN WOLF 233

Parameter plane of a family of meromorphic functions with two asymptotic
values
SHENGLAN YUAN 245



Contemporary Mathematics
Volume 573, 2012
http://dx.doi.org/10.1090/conm/5673/11409

Normal families and holomorphic motions over infinite
dimensional parameter spaces

Michael Beck, Yunping Jiang, and Sudeb Mitra

ABSTRACT. We use Earle’s generalization of Montel’s theorem to obtain some
results on holomorphic motions over infinite dimensional parameter spaces.
We also study some properties of group-equivariant extensions of holomorphic
motions.

1. Introduction

The main goal in this paper is to study an application of Earle’s generalization
of Montel’s theorem ([3]) to holomorphic motions over infinite dimensional param-
eter spaces. For precise definitions see §1.1. In the study of holomorphic motions,
an important question is the following: given a holomorphic motion ¢ : VX E — (fl
where FE is a finite set consisting of n pomts ifae (C \ E, does there exist a holo-
morphic motion ¢ : V x (E U {a}) — C such that ¢ extends ¢? In their famous
paper [9], Sullivan and Thurston called this the “holomorphic axiom of choice.” If
¢: AxE — Cisa holomorphic motion, where A is the open unit disk in the
complex plane, and F is any subset of @, the holomorphic axiom of choice is the
crucial step in extending ¢ to a holomorphic motion of @; see, for example, [2] and
[9]. In our paper, we use a theorem of Earle to generalize this fact to holomor-
phic motions over connected complex Banach manifolds. More precisely, we show
that if V' is a connected complex Banach manifold with a basepoint such that the
holomorphic axiom of choice holds, then any holomorphlc motion ¢:VxFE— C
can be extended to a holomorphic motion ¢> V xC - C. Furthermore, if the
holomorphic motion ¢ is group-equivariant, then the extended holomorphic motion
a can be chosen to have the same group-equivariance property.

Acknowledgement. We want to thank the referee for several valuable sug-
gestions.

1.1. Definitions and some facts.

2010 Mathematics Subject Classification. Primary 32G15; Secondary 37F30, 37F45.

Key words and phrases. Normal families, Montel’s theorem, holomorphic motions, group-
equivariant holomorphic motions.
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2 MICHAEL BECK, YUNPING JIANG, AND SUDEB MITRA

DEFINITION 1.1. Let V be a connected complex manifold with a basepoint
to and let E be any subset of C. A holomorphic motion of E over V is a map
¢:VxXE— C that has the following three properties:

(i) ¢(to,z) = 2z for all z in E,

(i) the map ¢(t,-) : B — Cis injective for each ¢t in V, and

(iii) the map ¢(-,z) : V — Cis holomorphic for each z in E.

We say that V' is a parameter space of the holomorphic motion ¢. We will
assume that ¢ is a normalized holomorphic motion; i.e. 0, 1, and oo belong to E
and are fixed points of the map ¢(¢,-) for every ¢ in V. It is sometimes useful to
write ¢(t,z) as ¢,(2), and also as ¢*(t), for (¢,2) € V x E.

IfEisapropersubsetofEarlqu:VxE:)@,g/b\: V x E — C are two
holomorphic motions, we say that ¢ extends ¢ if ¢(t,2) = ¢(t, z) for all (¢, z2) in
V x E.

DEFINITION 1.2. Let V' be a connected complex manifold with a basepoint. Let
G be a group of Mdbius transformations, let £ C C be G-invariant, which means,
g(F) = E for each g in G. A holomorphic motion ¢ : V x E — C is G-equivariant

if for any t € V,g € G there is a Mobius transformation, denoted by 6;(g), such
that

o(t,9(2)) = (0:(9))(¢(2, 2))

for all z in E.

The following generalization of Montel’s Theorem, due to Earle (see [3]), is
important in our paper.

THEOREM 1.3. Let V' be any connected complex Banach manifold, let F be any
family of holomorphic functions f :V — C such that the range of f never contains
0 or 1. Then F is a normal family, meaning that if {fo} is any net in F, there is
a subnet {fg} which converges in the compact-open topology.

We now review a well-known fact. For holomorphic motions over A, this was
proved in [7].

PROPOSITION 1.4. Let ¢p:V x E — C bea holomorphic motion, where V' is a
connected complexr Banach manifold with basepoint ty. Let py denote the Kobayashi
pseudometric on V. Then:

(1) ¢(-,) is jointly continuous.
(2) ¢ extends to a holomorphic motion to the closure E.
(3) & :AE — C is the restriction of a (normalized) quasiconformal self-map

of C.

PROOF. Let p be the Poincaré distance on C \ {0,1,00}. Note that if z,w €
C\ {0,1,00} are a bounded hyperbolic distance apart, and |z| = 0, then |w| — 0.
Define n: RT x RT — RT by n(M, €) := sup{|w| : p(z,w) < M, |z| < €}. Evidently
this function is continuous, increasing and unbounded in € for each fixed M, and
moreover 1(M,e) — 0 as e — 0, and |w| < n(M, |z|) whenever p(z,w) < M.

For any four distinct points a, b, ¢,d € E define:

9(t) := cr(¢u(a), ¢u(b), dr(c), ¢u(d)),
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the cross-ratio of the points ¢;(a), ¢;(b), ¢i(c), ¢i(d). So, we have

(¢e(a) — du(c))(B(b) — Pu(d))
(¢e(a) — de(d))(Pe(b) — de(c))

Since ¢ is injective in the second coordinate, this gives a mapping g : V — @\
{0,1,00}. Since ¢ is holomorphic in the first coordinate, g is holomorphic and thus
p(g(t), g(u)) < py(t,u) for all t,u € V. Since g(t() is equal to cr(a, b, c, d), we have:

ler(¢e(a), dr(b), ¢e(c), $e(d))| < nlpv (¢, to), |er(a, b, ¢, d)]).

Keep b and d fixed, and let a — ¢. Then cr(a,b,c,d) — 0, whence it follows
¢i(a) — ¢¢(c) uniformly with modulus of continuity depending only on py (¢, ty).
Since ¢ is continuous in the first coordinate this gives the first statement, that of
joint continuity.

g(t) =

For (2), using the above arguments, for any fixed ¢, ¢; is equicontinuous on
E, and therefore, it can be extended to a continuous function on E. For any fixed
2€E (2#0,1,00), let z, — 2z, where 2, € E. Since ¢ (t) is holomorphic for each
Zn, and z, # 0,1, 00 for any n, {¢* (t)} is a normal family. Therefore, there exists a
subsequence ¢*"i — ¢* and ¢* is holomorphic by Theorem 1.3. For the injectivity,
since for any z # w € E, the cross-ratio cr(0, ¢(t, z), ¢(t,w),00) is bounded, this
implies ¢(t, z) # ¢(t, w).

For (3) consider any point z € E, any other two points, w;, ws € E such that
er(z,wy,we,00) = 1, then er(¢i(z), dr(wy), di(ws),00) < n(p(t,to)), this implies
that ¢; is the restriction of a quasiconformal self-map of C. O

REMARK 1.5. For standard facts on quasiconformal mappings see [1]. The
extension to the closure (Part 2) is also proved in Theorem 1 in [5], using different
methods.

DEFINITION 1.6. Let V' be a connected complex Banach manifold with a base-
point. Let ¢ : V x E — C be a holomorphic motion of any finite set E (containing
0, 1, and 00), such that if a is any point in C\ E, there exists a holomorphic motion

b:V x (BFU{a}) — C extending ¢. Then we say that the holomorphic aziom of
choice holds.

1.2. Statements of the main theorems. Our goal in this paper is to prove
the following theorems.

Theorem A. Let V be any connected complex Banach manifold with a base-
point toy such that the holomorphzc axiom of choice holds. Then, if E is any subset
ofC and if ¢ :'V x E — Cisa holomorphic motion, ¢ can be extended to a
holomorphic motion of(C

In the next theorem, F is a closed G-invariant subset of (ﬁ; see Definition 1.2.

Theorem B. Let V be a connected complex Banach manifold with basepoint
to, such that the holomorphic axziom of choice holds. Then, if ¢ : V x E — CisaG-
equivariant holomorphic motion, ¢ can be extended to a G-equivariant holomorphic
motion of C.
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2. Proof of Theorem A

LEMMA 2.1. Let V be a connected complex Banach manifold with basepoint
to, let E be a finite subset of C. Let ® := {all normalized holomorphic motions
¢:VxE — C with basepoint to}. Then ® is a compact set in the compact-open
topology.

PROOF. By Proposition 1.4, each element of ® is a jointly continuous function;
so speaking of ® as a subset of the space of all continuous functions on V' x E
with the compact-open topology makes sense. To show ® is compact, we must
show every net in ® has a subnet converging to a limit in ®. Let 21,..., 2, be the
elements of F \ {0,1,00}.

Let {¢.} be a net in ®, and consider {¢L}(t) := ¢a(t,21). This defines a
family of holomorphic functions on V' which miss 0 and 1, so by Theorem 1.3 there
is a convergent subnet {¢}}. Consider next the net {¢%}, with like notation. By
the same result there is a subnet {¢?} which converges compactly, {¢}} converges
compactly as well. Repeating this argument we obtain a net {¢;} such that each
{¢k} converges compactly. Setting ¢(t, ;) := lims ¢% (¢), and setting ¢(¢,¢) = ¢ if
¢ =0,1,00, defines a function ¢ : V x E — C. If we can show ¢ € P, it will be the
limit desired.

That ¢(tg,z) = =z for all z € E is obvious. That ¢ is holomorphic in the
first coordinate follows from the fact each qu’g is holomorphic, and the collection
of holomorphic functions is closed in the compact-open topology. Also, the limit
function ¢ is evidently normalized. Showing ¢ is injective in the second coordinate
is done as follows.

Fix t € V. Since each ¢;s(t,z) € ®, there exists, (by Proposition 1.4) an 7,
independent of §, such that:

|Cr(¢(5,t(z)a 1707 ¢¢5,t(z/))| S T}(|C7”(Z, 1707 zl)l)'

and with z and 2’ distinct elements of E not equal to 0 or 1. Passing to the limit
gives:

ler(¢e(2), 1,0, d¢(2"))| < m(|er(z,1,0,2"))).
The cross-ratio on the RHS will be < oo, so the cross-ratio on the LHS will be
< 00, implying ¢;(z) # ¢¢(2'), thus proving injectivity in the second coordinate in
this case. The possibility 2z or 2’ is equal to 0 or 1 is dealt with by replacing 0 or 1
with oo and then permuting elements in the cross-ratios above. O

LEMMA 2.2. Let {E,} be an ascending sequence of finite subsets of C such
that By D {0,1,00}, and let E = |J,, En. For each n, let ¢, be a normalized
holomorphic motion on V x E,,, where as usual V is a complex connected Banach
manifold with basepoint to. Then there is a subsequence ¢, and a holomorphic

motion ¢ : V X E — @, such that ¢,,, converges compactly to ¢ on each V x E,.

PRrROOF. Denote J,, E,, by E’ for convenience. Since ¢,|(V x Ep) is a col-
lection of holomorphic motions of F;, and F is finite, by Lemma 2.1, there is a
subsequence ¢, , which converges compactly on V' x Ej. Since ¢y, [(V x Ey) is a
sequence of holomorphic motions on V' x F there is, by the same lemma, a further
subsequence ¢, , which converges compactly on V' x E,, and therefore on V' x E;
as well. Continuing like this, and then applying a diagonalization argument, we see
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that there is a sequence ¢, , which converges compactly on each V' x E,,. There-

fore, it converges to a limit ¢ : V x E' — C which is a holomorphic motion. By
Proposition 1.4, this extends to a holomorphic motion of E’. O

Proof of Theorem A.

Step 1: By Proposition 1.4, we can assume that F is closed. Let {E,} be
an ascending sequence of finite subsets of E whose union E' is dense in E, and
let y € C\ E. We claim ¢ has an extension ¢/ on V x (E U {y}) which is also a
holomorphic motion.

Let ¢,, be the holomorphic motion on V' x E,, obtained by restricting ¢, and let
¢!, be a holomorphic motion on V x (E, U{y}) which extends ¢,,. By Lemma 2.2,
there is a subsequence ¢;1J which converges at each point of E’'U{y} to a holomorphic
motion on V x (E’ U {y}). By Proposition 1.4, this holomorphic motion can be
extended to a holomorphic motion on E U {y}; denote it by ¢', and since it agrees
with ¢ on the dense subset V x E’ of V' x E, and since both are continuous, ¢’ is
the extension desired.

Step 2: Let E C C be any closed set, and let Y = {y1, 92, ...} be a countable
dense subset of C \E. Let Fy = E, let F} = EU{y1}, let F5» = F; U {y2}, and
so on. Let ¢g = ¢. By Step 1 there is an extension ¢; to V x Fy of ¢ which is
also a holomorphic motion. By Step 1 again, there is an extension ¢, to V x Fy
of ¢, which is also a holomorphic motion. Continuing inductively, we obtain a
sequence ¢, : V x F, — C of holomorphic motions, all of which extend ¢. Since
each holomorphic motion is an extension of the one before, a holomorphic motion
¢’ clearly exists on V' x (EUY). Use Proposition 1.4, and we are done by choice
of Y. a

PROPOSITION 2.3. Let V be a connected complex Banach manifold with base-
point ty. Letp: VX E — Chea holomorphic motion with the following property: if
Ey is a finite subset of E, and'Y C C \ Ey is finite, there is a holomorphic motion
(E on V x (Ey UY) whose restriction to V x Ey agrees with ¢. Then there is a
holomorphic motion $: V x C — C which extends o.

PROOF. By Proposition 1.4 we may assume that F is a closed set. Let {0,1,00}
C Ey C Ey C ...... be an ascending sequence of finite subsets of E whose union
E'is dense in E. Let Y = {y1, Y2, ...} be a countable dense subset of C \ E, and
let F, := E, U{y1,y2,...,yn} for every n. By hypothesis there is for each n a
holomorphic motion ¢, on V x F,, whose restriction to V x FE,, coincides with ¢.
By Lemma 2.2, if F’ := UF,, there is a holomorphic motion ¢’ on V x F’ such that
&' agrees with ¢ on V x E'. Let ¢ be the extension of this motion to the closure of
F’, it will extend ¢ and since F/ = @, this is the extension desired. |

3. Group-equivariant extensions of holomorphic motions

The discussion in Sections 3 and 4 are inspired by the arguments in the proof of
Theorem 1 in [4]. Let V' be a connected complex Banach manifold with basepoint
to, let G }:/)\e a group of Mobius transformations, and E be a closed G-invariant
subset of C (containing 0, 1, o0). Suppose ¢ : V x E — Cisa G-equivariant
holomorphic motion (see Definition 1.2).
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For any t € V, g € G, there is a Mobius transformation, denoted by 6,(g), such
that

d(t, 9(z)) = (6:(9))(o(t, 2))
for all z in E. It is proved in Theorem 4 (i) of [8] that {6;};cy is a holomorphic
family of isomorphisms of G see Definition 1.10 and Theorem 4 (i) of [8]. Since 6y,
is the identity, 0; is a quasiconformal deformation of G, for all ¢ in V', by Theorem

(ii) of [8]; which means, there exists a quasiconformal homeomorphism f; of C
inducing 6, in the sense that

ftog=10i(g)o fi for all g € G.
In particular each of the isomorphisms 6, is type-preserving.

If G is a group of Mobius transformations and z € C then the stabilizer is
denoted by G. for the remainder of the paper.

PROPOSITION 3.1. Let V be a connected complex Banach manifold with base-
point tg, let G be a group of Mdbius transformations, let E be a closed G-invariant
subset of ® containing {0,1,00}, and let ¢ : V x E — C be a G- -equivariant
holomorphic motion. Let F = {z € C : G. # {id}}. Then ¢ has an extension
b:V x (FUF)— C which is also a G-equivariant holomorphic motion.

Proof. Since FE is closed and G-invariant and contains at least three points, it
contains all fixed points of parabolic or loxodromic (including hyperbolic) elements
of G. This follows from the fact any such fixed point is an attractor of the transfor-
mation itself (in the parabolic and loxodromic attractor case) or its inverse (in the
case the fixed point is a repeller of a loxodromic element). Thus, if z € F'\ E, then
the stabilizer subgroup G, contains only the identity and elliptic transformations.
This also holds for all ,(G.), because as stated before, each 6, is type preserving.

If g, h € G, are nonidentity elements and do not have the same fixed point set,
ghg~th~! is parabolic (see Section 9G in Chapter 2 of [6]). It follows that every
element of GG, has the same two fixed points. The same is true for each 6;(G.,).
Since 6;(g) depends holomorphically on ¢ for each g € G, for each z € F \ E there
is a unique holomorphic function 1, on V such that ¥, (tg) = z and 1. (t) is fixed
by 6;(g) for all g € G, and all t € V.

We extend ¢ to E'U F by setting a(t, z):=,(t)ifteVand z€ FF\ E. We
claim this extended map is a G-equivariant holomorphic motion. For any z € FUFE,

5(t0,z) = 2 by construction. That 5 is holomorphic in the first coordinate also
follows directly from construction.

Showing q~§ is G-equivariant is only slightly more involved. Note E U F' is G-
invariant; for E is G-invariant by hypothesis, and F' is G-invariant by elementary

algebra. If z € E, ¢(t,g(z)) = (6:(9))(t,z) for all g in G by hypothesis. If
z € F'\ E, then the result follows from the definition of 1, and elementary facts
about group actions.

The injectivity follows from the following

LEMMA 3.2. If ¢7(s, z) = Zb'(s,g(z)) for some g € G,s € V and some z € EUF,
then g € G.

The proof is given below.
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We continue with the proof of Proposition 3.1. Suppose q‘E(t, z) = ¢T(t, 2"), where
t € V is fixed. We need to show z = 2’. If both are in E, this is true by hypothesis.
Assume, then, z € F'\ E. Then for all g € G we have

B(t,9(2)) = (0:(9))((t, 2)) = (6:(9))(D(t, ) = B(t, g(2)).

So if ¢ € Gur, ¢(t,z) = ¢(t,g(z)). By Lemma 3.2, this implies that g € G..
Thus G-, C G., and G. = G,/ follows because the argument is symmetric. Since
2z € F\ E, G, is a nontrivial group consisting only of elliptic elements all of which
share the same fixed points. If z # 2/, they must be these fixed points. So 5(5, 2')
and (Z(s, z) are the two fixed points of 64(g) for any s € V and nontrivial g € G
(this follows from the argument about disjoint graphs given in the proof of Lemma
3.2), contradicting our assumption B(t,2) = ¢(t,2'). So z = 2/, and the proof is
complete. g

Proof of Lemma 3.2. Assume there is some combination of g, z and s for which
Lemma 3.2 is false. If z € F this cannot happen, so assume z € F'\ E henceforth.
For simplicity’s sake let w := 55(3, z), and by our hypothesis and G-equivariance
of ¢ we have 0,(g)(w) = w. Choose a quasiconformal homeomorphism f, of C
inducing 6, and observe g fixes the point 2’ := f;}(w) because

9(z) =go fiH(w) = fto feogo fiH(w) = f o bs(g9)(w) = f (w) = 2.

That is, g € G,/. If z = 2/ there is nothing to prove, so we henceforth assume this
is not the case. If h € G, then by the G-equivariance we have

h(z') = ho fiH(w) = £ o fyoho fTH(w) = f710s(h)(w) = f7H (w) = 2/

implying that G, C G./. Recall we assumed ¢ was not in G, and choose a nontrivial
h € G,. The commutator h* = hgh~'g~! is parabolic, so it can have only one fixed
point, which will of course be z’ since both g and h fix it. The transformation 6¢(h*)
is also parabolic, and it fixes ¢(s z') by the G-equivariance and it fixes w because
fs induces 6,. Therefore ¢(s ) =w= q’)(s z). Since h € G, and G, C G,
G-equivariance implies 0,(h) fixes both ¢(s, z ") and 5(5, z) for every t € V. But
0s(h) is always elliptic, and its fixed points are given by two holomorphic functions
of s on V' with disjoint graphs (as subsets of V' x (ﬁ)
It then follows from the definition of ¢ that ¢(t, z) and ¢(t,2’), as functions of
t either agree everywhere or agree nowhere. But we have already seen that when
= s, ¢(t,z) = ¢(t,2'). But this contradicts the fact qb(to,z) # d(to,2'), since
z 7é 2’ by assumption. Hence we have a contradiction, and our lemma follows. [

4. Proof of Theorem B

We showed in the proof of Theorem A that the hypothesis has the implication
that if A is any subset of C, and y € @ \ A, then there is an extension of ¥ to
V x (AU {y}) which is also a holomorphic motion. Now, let ¢ and E be as in
the hypothesis of our theorem, and let F' be as in Proposition 3.1. Then ¢ has
a G-equivariant extension to V' x (E U F); denote this extension by ¢ as well for
simplicity. Note that the definition of G—equlvarlance of a motion of a set clearly
extends to the closure of that set. If EUF is dense in (C we are done, as ¢ extends
to V x C by Proposition 1.4. Otherwise let E be a G-invariant subset of C on
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which there is a G-equivariant holomorphic extension of ¢, denoted by ¢, again for

simplicity, and further assume (EU F') C E. Again, if E is dense in C we are done.
If not, take y € C \ E, and extend ¢ to ¢/ : V x (E U {y}). This can be done

by the above comment. Now extend ¢’ to all of V' x (E U G(y)) by the formula

¢'(t,9(y)) = (0:(9)) (¢ (£, 1))

where g € G,t € V. Here G(y) denotes the G-orbit of y, and this is well-
defined because G, is trivial (y is not in F). We claim this extended ¢ is a
G-equivariant holomorphic motion. Note that E U G(y) is G-invariant. Since
01,(9) = g, ¢'(to,9(y)) = (04,(9))(¢'(to,y)) = g(y), (i) of Definition 1.1 holds.
Since for fixed g, 0;(g) is holomorphic on t € V, and ¢/(t,y) is holomorphic on
t € V by construction, for g(y) € G(y) we have ¢'(t,g(y)) is the product of two
holomorphic functions, and so holomorphic itself. That ¢’ is G-equivariant is self-
evident.

Before verifying injectivity, we make some general comments about fixed points
of transformations in 6;(G), where ¢t € V' is given. For any subset D C E we define

¢(t, D) —{CEC ¢ = ¢(t, z) for some z € D}.

For any nontrivial g € Mob, let Fiz(g) be the set of fixed points of g. We claim
that if g € G, ¢(t, Fiz(g)) = Fiz(0:(g)). Since 6, is type-preserving, both Fiz(g)
and Fiz(0;(g)) contain the same finite number of points. Now say a € Fiz(g).
Then ¢(t,a) = ¢(t,g(a)) = (0:(9))(4(t,a)), implying ¢(t, Fiz(g)) C Fiz(0:(g)),
and equality follows.

Now, fix t € V; we need to show ¢/(t,z) = ¢'(t,2') = 2z = 2/. If both z and
2" are in E U {y}, this is true by construction. So assume z € E, and 2’ € G(y).
There is a g € G such that g(y) = 2/, and by G-invariance of E there is a (e E
such that g(¢) = z. Then we have, by G-equivariance:

(0:(9))(¢'(t,Q)) = ¢/ (t,2) = ¢'(t, 2") = (0:(9)) (&' (t,))
which implies that ¢'(t,{) = ¢(t,y). Since the last statement is false, we have a
contradiction.

Finally, assume both points are in G(y), then there are distinct g,h € G such
that g(y) = z,h(y) = 2/, and g # h. Then (6:(9))(¢'(t,y)) = (0:(h))(¢'(t,y)). So
0;(gh™1) fixes ¢'(t,y). It follows from the above comments y € Fiz(gh™!), imply-
ingye F C E, a contradiction.

Step 2: Take Y a countable subset of C \ E such that

(1) Any two distinct elements of Y are in distinct G-orbits.

(2) EUG(Y) is dense in C, where G(Y) is the G-orbit of the entire set Y.
By applying the logic in Step 1 repeatedly, we obtain a G-equivariant extension

of ¢ to all of V x (FUG(Y)), and then apply Proposition 1.4. That completes the
proof. O
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