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Exterior-Algebraic Method in Tensor Calculus

Guo Zhong-heng ( ¥5 fi 4§)
(Dept. of Mathematics, Peking University)

Abstract

Using the exterior-algebraic technique, this paper provides a systematic formal deriva-
tion of expressions for the principal invariants of an endomorphism, an intrinsic proof
of Cayley-Hamilton theorem, a direct proof of Newton’s formulae, and a direct deriva-
tion of the derivatives of the principal invariants. The present approach substantially
improves those in ezistence.

The aim of the present paper is to show that the usage of the exterior algebra
changes significantly the feature of tensor calculus. In order to expose the elegance and
potential of this technique, after some preliminaries, this paper provides derivations
or proofs for 4 problems, which improve substantially the existing ones. The whole
development is n-dimensional. Throughout this paper, the range of index is from 1 to
n and the summation convention is applied.

1. Preliminaries

Let R be the field of real numbers, V an n-dimensional (real) vector space and V*
its dual. A co-vector B € V* is a linear functional on V:

B: Vo R:uw— B(u)=<B,u>. (1.1)

The set of all endomorphisms A, B, ... from V into itself are denoted by L(V).

Definition 1.1 For any positive integer =, the dual pairing of exterior products 8* A
.o-AB"and u; A - Au(B,...,B" € V¥uy,...,u, € V) are defined as

(ﬁl) ul) U (Blv ur)
(B*A--AB", up A---Au,) = : : . (1.2)
@, u1) ... (B, u)
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Definition 1.2 Throughout this paper, {e;} and {a'} always denote the dual bases
of ¥V and V*, satisfying

(o' ej) = 6; (1.3)
For any positive integer r, the generalized Kronecker delta of »*"-order is defined as

6;:;: = (at A A a"',e,-, A---Nej,). (1.4)

Corollary 1.3

fiim=(a'A--Na® e1A:--Ney) = 1. (1.5)

Definition 1.4 The trace of the endomorphism A is defined as
trd = (o', Ae;). (1.6)
It is easy to show:
Lemma 1.5
(a’,Be;)Ae; = ABe;, VA,B e L(V). (1.7)

Lemma 1.6 Let {u;} C V and {8°} C V* are sets of n linearly independent vectors
and co-vectors, respectively. Then

(BA--AB™, ur A+ Auy,) = det((8°,u;)) # 0. (1.8)

Proof Consider the homogeneous linear system
(B, uj)z? =0 (1.9)

with {27} C R as unknowns. Any co-vector £ € V* may be expressed as ¢ = &P
Multiplying (1.9) by ; and summing it with respect to index i, we get

(f, :l:j uj) = 0.
In virtue of arbitrariness of £ and definiteness of dual pairing, we have
z’ u; =0

and the linear independence of {u;} yields 2/ = 0. This means that (1.8) has only
trivial solution and det((8*,u;)) # 0.
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II. Principal Invariants of an Endomorphism

The formal derivation of the classical componential expression for the principal inva-
riants of an endomorphism in n-dimensional space is unavailable in normal textbooks!!+2.
We can find this derivation in Ref. [3]. In this section we derive three expressions in an
alternative way. The first two (2.10) and (2.17) are in terms of exterior algebra and
the third one (2.18) coincides with the classical expression.

Theorem 2.1 Relation
Auj A+ A Au, = (detA)us A---Au,, VYA€ L(V), u;eV (2.1)

holds, where detA € R is called the determinant of A. detA does not depend upon
the choice of {u;}. If {u;} C V and {B'} C V* are sets of linearly independent vectors
and co-vectors, then det A has the expression

det A = det((ﬁi,Au,-))

det((B ;) (22)

Proof If {u;}is aset of linearly dependent vectors, then { Au;} is also such a set, and
(2.1) holds automatically. Thus, it remains for us to prove (2.1) for any independent
set {u;}. In this case, u; A --- A u, is a non-vanishing n-form and any n-form is its
multiple. In particular, we have

Aui A - NAu, = pu A -+ Au, (2.3)
and

Aup AN Augy = plup A Aupr (2.4)
for another independent set {u;}:

w; = & uy;  det(®) £ 0. | (2.5)

Constructing the dual pairing of (2.3) and (2.4) with the exterior product of any linearly
independent co-vector set {'}, and taking (1.8) into account, we obtain

_ detl(#, Au;)) (2.6)
det((B", u;))
and
, _ det((8, Auy))
det((B", u;))
Condition (2.5) yields that p = p'. From expression (2.6) we can see that u is also

independent of the choice of {B'}. Thus, the real number y is just the determinant of
A with the property stated in the theorem. a
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Now we substitute A — AI (VA € R, I—identity endomorphism) into (2.1) for A,
we have

(A=ANuy A+ A (A - Ay, = (det(A — AI))uy A -+ A u,. (2.7)

By virtue of linearity of exterior multiplication, the left-hand side of (2.7) may be
expanded into a polynomial of A with n-form “coefficients”.

n

D UL A A Au A A Aug A A ) (=A)P
r=0 1<4;<<i,<n

= (det(A — AI))u; A --- A uy,. (2.8)

If {u;} is a linearly independent set, then each “coefficient” can be expressed in terms
of uy A+ Aup:

E A ANAu, A---ANAu;, A ANy, = Lug A Auy,
1<i; <-<ir<n

=150 (2.9)

This relation holds even when u; A --- A u, = 0 (i.e. {u;} is linearly dependent),
because in this case each “coefficient” of (—A)"~" on the left-hand side of (2.8) must
vanish. The real numbers Iy, I5,...,I, are called the principal invariants of A. The
next theorem shows that they are also independent of the choice of {u;}.

Theorem 2.2 The principal invariants I.(r = 1,2,...,n) of an endomorphism A
do not depend upon the choice of {u;}. If {u;} C V and {8’} C V* are linearly
independent sets, then I, has the expression:

B (BYA - AB™Y, Yiciicocipcn W1 A s A AUy Ao A Aug, A A uy)

I,
(ﬂl/\.../\ﬁn’ul/\.../\un>

(2.10)

Proof Constructing dual pairing of (2.9) with ' A---AB", we get (2.10). Analogous
to the last theorem, the proof of the first part of the theorem reduces to the proof of

S(i) = det(&¥)S(4), (2.11)
where

S(i) = S wi A AAug Ao A Aui A A ug, (2.12)
lsil<"'<‘.rsn

-S‘(il)= Z uy/\---/\Au,-i_/\’--/\Au,-r'/\---/\u,,:,
1/<4) < <ip <!
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and {uy} is an arbitrary independent set satisfying (2.5). Substituting (2.5) into (2.12),
we have

2 :r ) s
s@H= ¥ Q;‘...Q:f...i::...é:f-u,-;/\---/\Au,-;(,-l)/\
1<3; < <ip<n

---/\Au,-,q(,-')/\---Au,-;_.

The vector with subscript (1) is the i;*b-element in the exterior product. Notice that
the lower indices in the product of n coefficients <I>}' are always (1,2,..., n), independent
of (i1,...,4,). Hence

s 1 :/
S(z):@f...Q:{' Z u,—;A.--/\Au‘-;(;l)/\---AAu;:’(,-,)A---Au,-;..
1<i1 <<ip <n

(2.13)
It is easy to check that in

T = Z u,-;/\---/\Au,';(,-,)/\---/\Au,-:’(,-')/\---/\u,';‘ (2.14)
1<41<<i,<n

an interchange of two indices #’ and J' causes the change of sign. Therefore, it suffices
to confine the consideration to sums 7" with distinct lower indices. If (), ..., 7,) is a
permutation of (1/,...,n’): 5 = o(k'), k' = 1,...,n/, then any T’ and (2.13) may be
written as

T'=sgna E uy/\---/\Au;;/\---/\Au,w'/\---/\un,
V<] <-<ip<n?

= sgnoS(+')
and

S@i) = 3 sgno®]®) . 85 5(i") = det(a!) s (i),
oEP,

where P, is an n-element permutation group. This is just the formula (2.11) to be
shown. O .
With the notation of

Lh=1 (2.15)

and expression (2.9), (2.7) may be written as

[i[,(—/\)"" ~ det(A - AD)]ur A+ Ay, =0, (2.16)

r=0
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If we choose the dual bases {e;} and {a*} for {u;} and {B'} in (2.10) respectively, then
in virtue of (1.3) and (1.5), expression (2.10) reduces to a simpler form

L= Y (a'A--Aa™erA---AAe Ao AAei Ao Aeq)
1<i < <ip<n

= S (@M A--Aat, Ae Ao A Aey,)
1S“l<"'<"r$“

= %(az"l A---Aait,Ae;, A A Ae;,). (2.17)
We can see that
I, =trA, I, = detA.
Adopting the decomposition
Ae; = Aj;ej
and taking (1.4) into account, from (2.17) we get the classical componential expression
Iy = %Ajl,'l LA (0 A Aatt e A Aej,)

L oy 45 ;
= :i&ji‘.:..j:AJ‘ § e s (2.18)

If ) is an eigenvalue of A, we can take the corresponding eigenvector to be u;, say, in
(2.7), then

det(A — AI) = 0.

In other words, on the basis of (2.16), the eigenvalue X is a root of the characteristic
equation of A:

FA) = znjf,(—x)"-f = 0. (2.19)

III. Cayley-Hamilton Theorem

The existing proofs of n-dimensional Cayley-Hamilton theorem are componental
except for Truesdell and Noll’s one.[4] Under the assumed invertibility of the endomor-
phism A, Truesdell and Noll gave an intrinsic proof. For the intrinsic proof given here,
no restriction is needed to be imposed on A.

Theorem 3.1 Any endomorphism A satisfies its characteristic equation:

f(A) = f:r,(-A)"-f =0. - (3.1)
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Proof Denoting

S, = Z u1/\---/\Au.~lA---/\Au.-,/\---/\u,,_l,
1<i < <ip<n

and
Sozul/\---/\un_l,
and using (2.15), we have
Tour A=< A (~A)"%u, = Sg A (- A)" O, (3:2)
Replacing uy, in (2.9) by (—A)"* "u,, we obtain n equations:
Lui A AN (~A)""up = S, A (~4)" ", — Sr 1 A (A=)
r=1,....n—1 (3.3)
and
Lnui A AN (~A)" "y, = -8, A (A= (n=D)y (3.4)

Summing the n + 1 equations (3.2) - (3.4), we get

n n-—-1 n
Z LuiA-- AN (-A)* Ty, = Z S,/\(—A)"“'u,,—z: Sr_1/\(—A)"—('_1)u,,
r=0 r=0 r=1
=10
or
UT A Aup_g A [ZI,(—A)""]u,, = 0. (3.5)

r=0

In virtue of arbitrariness of {ui}, (3.5) yields (3.1).

IV. Key Recurrence Formula

In this section we shall derive a recurrence formula which will be essential for further
development.

Lemma 4.1 For any positive integers r and s, satisfying 0 < r» — s < n, and A B¢
L(V), recurrence formula

I _,tr((-A)*"'B) = F(A, B;r,s) — F(A,B;r,s +1) (4.1)
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holds, where

1
(r—s)!
Aei N---NAei,_ A(-A)'Be;,_, ). (4.2)

F(A,B;r,s) = (a" Ao Aatr-(e-1),

The condition imposed on r and s implies that » > 1 and s < r.

Proof Taking (1.6), (1.7) and (2.17) into account, keeping Definition 1.2 in mind,
and expanding the determinants on the right-hand side of (4.2) with respect to the last
column, we get

F(A,B;r,s) = (r—;.s)!«lil A---ANatr=+, Ae; A--- A Ae;,_,)

(aPr-++1, (- A)*~1Be;, _,,,)
1 r—s .
n (_l)r—a+P+1 (a‘P’(—A)‘_IBei,-_..H)
(r—s)! &
p=1
X(a't Ao APt APt A A ettt
Ae;, NN Aei A--- A Ae;,_,)
= I,_,tr((— A)*"1B)

r—8
+; Z(_l)"—"l’?(a"l Ao Aa*P1 A Pt A ...

Aacir—o+1 JAei A A (“A)‘Beir—-u A---A Ae;,_,)

= Ir—atr(('—A)’_lB) + ail Ao A a‘.r-—a’

S
CEICES)]
Ae;, A--- N Ae;,_,,, AN(—A)Be;,_,).

The last term is just F(A,B :r,s+ 1). a
Making B = — A in Lemma 4.1, we have:

Corollary 4.2 For r,s satisfying the condition in Lemma 4.1 and A4 € L(V), recur-
rence formula

I, _,tr(—A)" = G(A;r,38) — G(A;r,s + 1) (4.3)
holds, where
G(A;r,s) = F(A,—A;r,s)

= ———(r — s)'<ai1 A-ee Aaitmett 5 Ae.-, A A Aei,._, A (-—A)"ei'__._‘_l). a (4,4)
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For s = r, expressions (4.2) and (4.4) are still meaningful and in the form:
F(A,B;rr) = (a',(-A) 'Be;) = tr((-A)""'B), (4.5)

G(A;r,r)=tr(—-A)". (4.6)

V. Newton’s Formulae

Newton’s formulae are important in the theory of symmetric polynomials. All
existing proofs of these formulae are complicated®~8]. Here, using the key recurrence
formula, we offer a simpler proof.

Theorem 5.1 For any endomorphism A, Newton’s formulae

rl, + Zr:I,._,tr(—A)' = d, 1<r<n (5.1)
a=1
and
_Xr: I_,tr(-A)* =0, r>n (5.2)
hold.

Proof Obviously, (5.1) holds for » = 1. For the remaining cases with 1 < r < n,
Corollary 4.2 can be used. To this end, using (4.4) to rewrite expression (2.17) for I,,
we have

—rl, = G(A;r;1). (5.3)

Summing (4.3) for s from 1 to r — 1, and adding (4.6) to the resulting expression, we
get

r r r—=1
ZI,_,tf(—A)' = Z G(A;r,s) — ZG’(A;r,s +1)
s=1 s=1 =1

= i G(A;r,s) — Z G(A;r,s)
=1 =2

= G A1)

Inserting this result into (5.3) yields (5.1). The proof of the first Newton’s formula is
completed. Similarly, summing (4.3) for s from r — n to » — 1, and adding (4.6) to the
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result, we obtain

zr: I_,tr(—A)’ = z': G(A;r,s) - "z-:l G(A;r,s+1)

s=r—m I=r—mn 8=r—m
= G(A;r,r —n)
1, . .
= ;1—!(01" A--Aattt, Ae; A--- A Ae;, A (—A) ey, ,,)

= 0.

This is just the second Newton’s formula (5.2). The last equality is the consequence of
the fact that any (n + 1)-form is zero.

VI. Derivatives of Principal Invariants

Recently Carlson and Hogerlg] derived in an indirect way the expression for the
derivatives of the principal invariants of an endomorphism A € L(V):

DI.(A) =

r—1
gﬁ = [ZI,,(-A)"ﬁ-l]T, r=12,...,n, (6.1)
B=0

_ generalizing the derivation of Refs.[1], [4] and [10]. Ref.[1] assumes A symmetric, and
Refs.[4] and [10] assume A invertible. Using exterior algebra, we derive expression
(6.1) in a direct way without any restriction.

Assume I,(A) (r = 1,2,...,n) Fréchet differentiable. Then the directional deriva-
tive of I,(A) along B € L(V) is

DI(A)[B] = ditf,(A +1B)|_. (6.2)
On the other hand, we have
DI.(A)[B] = tz[(DI.(A))TB]. (6.3)

If we can transform the right-hand side of (6.2) into the form tr(CTB) (C € L(V)),
then the derivative of I, at A is readily found to be DI,(A) = C.

Theorem 6.1 The derivative of the r*® principal invariant I, of an endomorphism A
is given by

DI.(A) = X':I,_,(—AT)’“I. o (6.4)

Expression (6.4) coincides with (6.1), if the summation parameter § = r — s is used
instead of s.

Proof We calculate the right-hand side of (6.2):
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(At u&;)L=0 =2 [-’_—!(a 'A---Aa'?, (A +tB)e;,

A---A(A+tB)e;,)] .

QLA ) .
= ;Z(a"A---/\a"/\---_/\a",
L

Ae;, /\---/\Be;,/\---/\Ae.-,)

'

_ 1
T (r=1)
= F(A, B;r,1).

For r = 1, making use of (4.5), (6.5) assumes the form

d
Zh(a+ tB)I = F(A, B;1,1) = tr(IB).

Thus

DIi(A) = I = Lj(-AT)*-1,

(@A Aot Aei, A--- A Ae;,

11

A Be;,)

(6.5)

(6.6)

Hence, (6.4) holds for r = 1. For the remaining cases 1 < r < n, Lemma 4.1 can be
used. To this end, summing (4.1) for s from 1 to r— 1, and adding (4 5) to the resulting

expression, we get

i:[,_,tr((—A)"lB) EF(A B;r,s) - ZF A,B;r,s+1)

=1
= F(A,B;r,l).

Comparing this result with (6.5), we have

dL(a+m)|_ - ti[g I_.(-Ay~'B].

According to (6.2) and (6.3), this expression gives the transpose of (6.4):

(DL(A) = 3 Lu(~ Ay,
s=1

Together with (6.6), it completes the proof of the theorem.
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