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Preface to the English
Translation

Vladimir Arnold was one of the great mathematical minds of the late
20th century. His work was of great significance to the development
of many areas of the field. On another level, Russian mathematicians
have a strong tradition of writing for, and even directly teaching,
younger students interested in mathematics. This work is an example
of Arnold’s contributions to the genre.

In 2005, Arnold gave lectures at the Dubna summer camp. This
camp is an extraordinary gathering of the Russian mathematical com-
munity, in which distinguished mathematicians work to support ad-
vanced high school and undergraduate students entering the field.
The present book is based on notes from these lectures. As the
reader will see, Arnold was very connected to the new generation
of mathematicians. One can sense the urgency he felt at delivering
his thoughts into hands that might take them farther. The reader
expecting a formal mathematical exposition will sometimes not find
it here.

One might mistake this style of the work as not just urgent, but
sloppy. No. The style is well thought out. Arnold’s approach to
mathematics—and he makes this quite clear in several passages—
was fluid and intuitive. He saw mathematics not as a flat plain to
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be surveyed, but as a rugged terrain to explore. The most exciting
aspect of mathematics, for Arnold, seems to have been a dynamic
search for pattern through examination of many special cases. That
is, he held a severely Platonic view of the subject, as one that proceeds
as if it were an experimental science—hence the title. After this
exploratory phase, on can tuck in the ragged edges. Arnold does this
in many—but not all—cases, giving us theorems and proofs in the
classic manner.

But it is in the chase, in the experimental “phase” of the process
of doing mathematics, that Arnold here seems to take the most joy,
and offers this joy to a new generation. Mathematical mainstream
culture, in which one burns one’s scrap work, discourages this. Few
mathematicians—indeed few scientists in any field—open their minds
so completely as he has to their students.

Arnold’s style is unforgiving. The reader—even the professional
mathematician—will find paragraphs that require hours of thought
to unscramble. In some cases, Arnold collapses an argument into a
few sentences that might take up several pages in another style of
exposition. In other cases, he gives an intuitive argument in place of
a rigorous one, leaving the reader to construct the latter. He probably
felt that the real work was done on the intuitive level, and that his
teaching would be the more effective if he left the tidying up to the
student. The reader must have patience with the ellipses of thought
and the leaps of reason. They are all part of Arnold’s intent.

These lecture notes were gathered in haste from the field, and we
have corrected numerous misprints and small errors in notation. We
have given several extensions—in Arnold’s own style—to the work,
in “editors’ notes”. At the same time, we have striven to deliver
intact the style of the work. Arnold’s mind leaps from peak to peak,
connecting disparate areas of mathematics, all (or most) accessible to
the student with an advanced high school education. And yet there
is a unity to each lecture, a flow from very simple questions to deep
intellectual inquiry, and sometimes right to the edge of our knowledge
of mathematics.
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We hope that we have preserved this coherence, but also the
excitement of the work, the sharp, jagged edges and breathtaking
jumps that characterize the author’s thinking.

It is our pleasure to acknowledge the contributions of several col-
leagues to this work. In particular, Sergei Gelfand, at the Ameri-
can Mathematical Society, kept us on track at several key junctures.
James Fennell sedulously proofread the manuscript and corrected the
TEX files. We would also like to thank the students of the Gradus ad
Parnassum math circles at the Courant Institute, who gave us feed-
back about several sections. Much of this work was supported by a
generous grant from the Alfred P. Sloan Foundation.

MARK SAUL
February 2015
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Introduction

“Not having achieved what they desired, they
pretended to desire what they had achieved.”
M. Montel

In this series of lectures I will talk about several new directions in
mathematical research. All of these are based on the idea of numerical
experimentation. After looking at examples such as 5-5 = 25 and
6 -6 = 36, we advance an hypothesis, such as 7-7 = 47. Further
experimentation either supports or disproves it.

For example, Fermat’s hypothesis (that the equation 2" +y" = 2"
cannot be solved in natural numbers with n > 2) was advanced as
a result of his attempts at a solution. This hypothesis led to the
creation of a whole field of knowledge, but it was proved only after a
few hundred years had passed.

The majority of hypotheses that we make are so far not proven
(nor refuted). I decided to give these lectures exactly because of my
hope that the listeners will help in the investigation of these prob-
lems, if only by conducting numerical experiments (which I have also
conducted, without a computer, in the bounded region of the first
million numbers).

F—‘I
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Lecture 1

The Statistics of
Topology and Algebra

“I never heard of such a mathematician: he is
actually a physicist.”
Landauw, on Poincaré

“It is not Shakespeare that most matters, but
commentaries on his work.”

A. P. Chekhov, as described

by B. L. Pasternak

Poincaré, the greatest mathematician of the recent era, divided all
problems into two classes: binary problems and interesting problems.
Binary problems are problems which admit of an answer “yes” or
“no” (for example, Fermat’s question).

Interesting problems are those for which an answer of “yes” or
“no” is insufficient. They require investigation of questions that lead
one further. For example, Poincaré was interested in how to change
the conditions of a problem (for instance, the boundary conditions of
a differential equation), while retaining the existence and uniqueness
of its solution, or how the number of solutions varies when we make
some other change. Thus he started the theory of bifurcations.

3



4 1. The Statistics of Topology and Algebra

Three years before Hilbert gave his list of problems, Poincaré
formulated the basic, in his view, mathematical questions that the
nineteenth century would leave for the twentieth. This was the formu-
lation of the mathematical basis for quantum and relativistic physics.

Today, many people think that relativistic physics at the time, in
1897, did not yet exist, since Einstein published his theory of relativ-
ity only in 1905. But Poincaré formulated the principle of relativity
earlier, in his article of 1895, “On the Measurement of Time"”, which
Einstein actually used (and which, by the way, he didn’t acknowl-
edge in writing until 1945). In just the same way, Schrodinger, in
laying the foundation for quantum mechanics, achieved his success
only because he used the mathematical works of his predecessor Her-
mann Weyl, whom no one mentioned later on, although Schrédinger
actually references these works (in his first book).

1. Hilbert’s Sixteenth Problem

Although I basically agree with Poincaré, today I will talk about a
binary problem (or almost binary: this is why I am going to talk
about of it) posed by Hilbert, the 16th in his list.

This problem is actually much older than Hilbert’s list. In gen-
eral, it is one of the fundamental problems of all of mathematical
science (and of many of its applications).

Here is a very simple example: for an algebraic polynomial f in
two variables x and y, we look at the curve along which it equals zero:

{(xvy) eR?: f(xv y) - O}

The problem consists in determining the possible topological struc-
tures of this curve, if f is a polynomial of a given degree n.

For example, if n = 2, then by the ancient theory of conic sections,
the curve can be an ellipse, a hyperbola, a parabola, a pair of lines
(which might possibly coincide), or the entire plane (if the polynomial
is identically 0).

Augmenting the plane with points at infinity turns it into the
projective plane, for which the problem becomes easier. (An ellipse, a
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hyperbola, and a parabola have the same structure in the projective
plane. The only difference is in the position of this “circle” with
respect to the line at infinity. See Figure 1.)

RZ RZ RZ
o0 = 00 [e’s)
ellipse parabola hyperbola
Figure 1

For n > 2 the question is more difficult, but Descartes and New-
ton had already analyzed the cases n = 3 and n = 4. Hilbert asserted
the he had looked into it for curves of degree n = 6, but his result
(the proof of which he never published) was erroneous.

According to a theorem of Harnack, a curve of degree n consists

(n—1)(n—2)

of no more than g+ 1 = + 1 connected components

(where g is the genus of the associated Riemann surface formed by
the complex solutions of the equation of the curve in the complex
projective plane CP?). According to a theorem in topology, every
closed connected orientable surface is a surface of genus g, where g is
the number of handles we must affix to a sphere in order to obtain
this surface (see Figure 2).

For n = 6 we find that the genus of the Riemann surface ¢ is 10, so
that a real curve of degree 6 has no more than 11 components (which
are called “ovals”, and resemble circles, or at least are diffeomorphic
to the circle S').

Hilbert asserted that if the number of ovals is maximal (that
is, if there are 11 ovals), then these 11 ovals can be placed on the
(projective) plane RP? in only two ways.

Each oval bounds a “disk”, diffeomorphic to the interior of a
circle. (The complement of this disk in RP? forms a Mobius band:
this is how Mobius discovered his surface.)
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double torus (g = 2)

sphere S? (g = torus T? = S* x S (g =1)

®

Figure 2. Surfaces of genus 0, genus 1, and genus 2.

And so, Hilbert asserted that only one of these disks can contain
any other ovals inside it, and the number of interior ovals can only
take on two values: 1 and 9 (Figure 3).

Hilbert’s curves

OO0 Gudkov’s curve
OO0
0N of

o O
000\ o Oo/ OO0
OO
OO

Figure 3. Algebraic curve of degree 6 with 11 ovals.
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Hilbert’s error consisted in the fact that the number of interior
ovals could also be equal to 5. (This was discovered by Dmitri An-
dreevich Gudkov, a mathematician from Nizhny Novgorod, around
1970.) (See Editor’s note 1, page 55.)

For curves of degree 8 Hilbert’s question remains unanswered to
this day: the 22 ovals of a curve of degree 8 can be placed on the plane
in billions of different ways. But now certain bounds have been found
which reduce the number of topologically distinct curves. There are
now fewer than 90 cases. However, the number of examples actually
constructed, while greater than 70, is not as large as the number of
theoretical possibilities.

It is interesting that although the question seems to concern com-
putational mathematics, our computers, so far, have contributed al-
most nothing to its solution.

If the coefficients of a polynomial are known, then it is possible
for a computer to draw the positions of the ovals corresponding to
the curve. But a count of all possibilities (for any values of the
coefficients) is a much more difficult problem.

The problem also has an algorithmic solution, in the sense of
mathematical logic. In principle, we can even find the number of
connected regions into which the space of polynomials of degree n is
divided by a bifurcation diagram, near which the type of the curve
changes. But the number of computations needed for this is so large
that no progress in computer technology will allow us the hope of a
computer solution for the problem of polynomials of degree 8 in the
foreseeable future.

Drifting a bit from the theme of today’s lecture, I shall talk about
one very recent success of computer technology that I know of, with
regard to a closely related problem.

Let us think of the graph of a real polynomial of degree n in
two variables as a surface, z = f(z,y) in three dimensional space R3.
Near some of its points the surface is locally convex. We call such
points elliptical points. Around other points, the surface is locally
saddle-shaped. We call these points hyperbolic points (see Figure 4).
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elliptic points

- --

parabolic

points

hyperbolic points

Figure 4. The parabolic curve on a smooth surface.

The elliptical and hyperbolic points are divided by a curve con-
sisting of parabolic points. In terms of the partial derivatives of the
function f, the curve of parabolic points is given by the equation

of  f
oz?  Oxzdy
d t =
e 92 9 f 0,
oydx  Oy?

that is, by the condition fyfyy = (fzy)?, or that the Hessian of the
function f is zero.

Let f be a polynomial of degree n. We may ask: how many closed
curves (ovals) can its parabolic curve be made up of ?

For a polynomial f of degree 4, the Hessian is also of degree 4, so
by Harnack’s theorem the number of ovals cannot exceed g + 1 = 4.

It is not hard to construct a polynomial of degree 4, with a par-
abolic curve consisting of three ovals. I leave this problem as an
exercise for the reader.

But the problem of whether the parabolic curve of a polynomial
of degree 4 can consist of four ovals turns out to be very difficult.

It was solved in Mexico in 2005 by Adriana Ortiz-Rodriguez, who
defended her dissertation in Paris as my student. In her dissertation,
she proved that the number of ovals in the parabolic curve of a poly-
nomial of degree n is bounded from above by an® and below by bn?,
where a > b.



