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Preface to the Revised Edition

We published the original edition of this book in 1992 and have been
extremely gratified with its popularity for now over 20 years. The pub-
lisher recently asked us to write an update, and we have agreed to do
so in return for a promise that the future price be kept reasonable.

For this revised edition the entire book has been retyped into La-
TeX and we have accordingly been able to set up better cross-references
with page numbers. There have been countless improvements in nota-
tion, format and clarity of exposition, and the bibliography has been
updated. We have also added several new sections, describing the 7-A
Theorem, weak compactness criteria in L' and Young measure meth-
ods for weak convergence.

We will post any future corrections or comments at LCE’s home-
page, accessible through the math.berkeley.edu website. We remain
very grateful to the many readers who have written us over the years,
suggesting improvements and error fixes.

LCE has been supported during the writing of the revised edition
by the National Science Foundation (under the grant DMS-1301661),
by the Miller Institute for Basic Research in Science and by the Class
of 1961 Collegium Chair at UC Berkeley.

Best wishes to our readers, past and future.

LCE/RFG
November, 2014
Berkeley/Lexington
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Preface

These notes gather together what we regard as the essentials of real
analysis on R".

There are of course many good texts describing, on the one hand,
Lebesgue measure for the real line and, on the other, general measures
for abstract spaces. But we believe there is still a need for a source book
documenting the rich structure of measure theory on R", with particu-
lar emphasis on integration and differentiation. And so we packed into
these notes all sorts of interesting topics that working mathematical
analysts need to know, but are mostly not taught. These include Haus-
dorff measures and capacities (for classifying “negligible” sets for vari-
ous fine properties of functions), Rademacher’s Theorem (asserting the
differentiability of Lipschitz continuous functions almost everywhere),
Aleksandrov’s Theorem (asserting the twice differentiability of convex
functions almost everywhere), the area and coarea formulas (yielding
change-of-variables rules for Lipschitz continuous maps between R™ and
R™), and the Lebesgue—Besicovitch Differentiation Theorem (amount-
ing to the fundamental theorem of calculus for real analysis).

This book is definitely not for beginners. We explicitly assume our
readers are at least fairly conversant with both Lebesgue measure and
abstract measure theory. The expository style reflects this expectation.
We do not offer lengthy heuristics or motivation, but as compensation
have tried to present all the technicalities of the proofs: “God is in the
details.”

Chapter 1 comprises a quick review of mostly standard real analy-
sis, Chapter 2 introduces Hausdorff measures, and Chapter 3 discusses
the area and coarea formulas. In Chapters 4 through 6 we analyze the
fine properties of functions possessing weak derivatives of various sorts.
Sobolev functions, which is to say functions having weak first partial
derivatives in an LP space, are the subject of Chapter 4; functions of
bounded variation, that is, functions having measures as weak first par-
tial derivatives, the subject of Chapter 5. Finally, Chapter 6 discusses

xiil



xiv Preface

the approximation of Lipschitz continuous, Sobolev and BV functions
by C! functions, and several related subjects.

We have listed in the references the primary sources we have re-
lied upon for these notes. In addition many colleagues, in particular
S. Antman, J.-A. Cohen, M. Crandall, A. Damlamian, H. Ishii, N.V.
Krylov, N. Owen, P. Souganidis, S. Spector, and W. Strauss, have sug-
gested improvements and detected errors. We have also made use of S.
Katzenburger’s class notes. Early drafts of the manuscript were typed
by E. Hampton, M. Hourihan, B. Kaufman, and J. Slack.

LCE was partially supported by NSF Grants DMS-83-01265, 86-
01532, and 89-03328, and by the Institute for Physical Science and

Technology at the University of Maryland. RFG was partially sup-

ported by NSF Grant DMS-87-04111 and by NSF Grant RII-86-10671
and the Commonwealth of Kentucky through the Kentucky EPSCoR
program.

Warnings

Our terminology is occasionally at variance with standard usage.
The principal changes are these:

e What we call a measure is usually called an outer measure.

e For us a function is integrable if it has an integral (which may
equal +00).

e We call a function f summable if |f| has a finite integral.

e We do not identify two LP, BV or Sobolev functions that agree
almost everywhere.
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Chapter 1

General Measure Theory

This chapter is mostly a review of standard measure theory, with par-
ticular attention paid to Radon measures on R".

Sections 1.1 through 1.4 are a rapid recounting of abstract measure
theory. In Section 1.5 we establish Vitali’s and Besicovitch’s Cover-
ing Theorems, the latter being the key for the Lebesgue—Besicovitch
Differentiation Theorem for Radon measures in Sections 1.6 and 1.7.
Section 1.8 provides a vector-valued version of Riesz’s Representation
Theorem. In Section 1.9 we study weak compactness for sequences of
measures and functions.

The reader should as necessary consult the Appendix for a summary
of our notation.

1.1 Measures and measurable functions
1.1.1 Measures

Although we intend later to work almost exclusively in R", it is
most convenient to start abstractly.

Let X denote a nonempty set, and 2X the collection of all subsets
of X.

DEFINITION 1.1. A mapping ju : 2% — [0,00] is called a measure
on X provided

(i) (@) =0, and
(i) if R
AC U Ay,

k=1



2 General Measure Theory
then
o0
p(A) <Y p(Ag).
k=1

Condition (ii) is called subadditivity.

Warning: Most texts call such a mapping p an outer measure, reserv-
ing the name measure for p restricted to the collection of y-measurable
subsets of X (see below). We will see, however, that there are definite
advantages to being able to “measure” even nonmeasurable sets.

DEFINITION 1.2. Let p be a measure on X and C C X. Then p

restricted to C, written
ul C,

is the measure defined by
(L C)A):=pu(ANC) forall ACX.

DEFINITION 1.3. A set A C X is u~-measurable if for each set
B C X we have

u(B) = w(BNA) + u(B — A).

THEOREM 1.1 (Elementary properties of measures). Let pu be
a measure on X.

(i) If AC BC X, then
n(A) < u(B).

(ii) A set A is pu-measurable if and only if X — A is p-measurable.

(iii) The sets 0 and X are p-measurable. More generally, if p(A) =0,
then A is p-measurable.

(iv) If C is any subset of X, then each p-measurable set is also p L C'-
measurable.

Proof. 1. Assertion (i) follows at once from the definition. To show
(ii), assume A is p-measurable and B C X. Then

w(B) =u(BNA)+u(B—A)=puB—(X—-A)+uBN(X - A));

and so X — A is y-measurable.



1.1 Measures and measurable functions

3

2. Suppose now pu(A) = 0, B € X. Then u(BnN A) = 0, and

consequently

w(B) 2 u(B—A) =pu(BNA)+uB—A).

The opposite inequality is clear from subadditivity.

3. Assume A is py-measurable, B C X. Then

pL C(B)

w(BNC)
p((BNC)NA)+pu((BNC) - A)
p((BNA)YNC)+pu((B—A)NC)
=uLC(BNA) +uLCB-A).

Il

Hence A is p L C-measurable.

O

THEOREM 1.2 (Sequences of measurable sets). Let {A}2,
be a sequence of p-measurable sets.

(i) The sets

GA" and ﬁAk
k=1 k=1

are p-measurable.

(ii) If the sets {Ag}?, are disjoint, then

(111) IfA1 Q A]c gAk-l—l---; then

lim u(4,) = (G Ak) .

(iv) If Ay D ... A D Agy1 ... and p(Ay) < oo, then

Jm p(Ag) = p (ﬂ Ak) :
k=1



