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Preface

The theory of operators, created by V. Volterra, has as its
object the study of functions defined on infinite-dimensional spaces.
This theory has penetrated several highly important areas of
mathematics in an essential way: suffice it to recall that the
theory of integral equations and the calculus of variations are
included as special cases within the main areas of the general
theory of operators. 1In this theory the methods of classical mathem-
atics are seen to combine with modern methods in a remarkably effec-
tive and quite harmonious way. The theory often makes possible
altogether unforeseen interpretations of the theorems of set theory
or topology. Thus, for example, the topological theorem on fixed
points may be translated, thanks to the theory of operators (as has
been shown by Birkhoff and Kellogg) into the classical theorem on
the existence of solutions of differential equations. There are
important parts of mathematics which cannot be understood in depth
without the help of the theory of operators. Contemporary examples
are: the theory of functions of a real variable, integral equations,
the calculus of variations, etc.

This theory, therefore, well deserves, for its aesthetic value
as much as for the scope of its arguments (even ignoring its numerous
applications) the interest that it is attracting from more and more
mathematicians. The opinion of J. Hadamard, who considers the theory
of operators one of the most powerful methods of contemporary !
research in mathematics, should come as no surprise.

The present book contains the basics of the algebra of operat-
ors. It is devoted to the study of so-called linear operators,
which corresponds to that of the linear forms a.x, + a,z, + ... +
a,x, of algebra.

The notion of linear operator can be defined as follows. Let E
and E, be two abstract sets, each endowed with an associative addi-
tion operation as well as a zero element.. Let y = U(z) be a function
(operator, transformation) under which an element y of E, corresponds
to each element x of E (in the special case where E, is the space of
real numbers, this function is also known as a ;unctional). 1If, for
any z, and z, of E, we have U(x, + x,) = U(x,) -~ U(x,), the operator
U is said to be additive. If, in addition, E and E, are metric
spaces, that is to say that in each space the distance between pairs
of elements is defined, one can consider continuous operators U.

Now operators which are both additive and continuous are called
linear.

In this book, I have elected, above all, to gather together
results concerning linear operators defined in ¢(eneral spaces of a
certain kind, principally in the so-called B-sp«ces (i.e. Banach
spaces [trans.]), examples of which are: the space of continuous
functions, that of the pth-power-summable functions, Hilbert space,
etc.
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I also give the interpretation of the general theorems in various
mathematical areas, namely, group theory, differential equations,
integral equations, equations with infinitely many unknowns, func-
tions of a real variable, summation methods, orthogonal series, etc.
It is interesting to see certain theorems giving results in such
widely varying fields. Thus, for example, the theorem on the exten-
sion of an additive functional settles simultaneously the general
problem of measure, the moment problem and the question of the
existence of solutions of a system of linear equations in infinitely
many unknowns.

Along with algebraic tools, the methods are principally those of
general set theory, which in this book are to the fore in gaining,
for this theory, several new applications. Also to be found in
various chapters of this book are some new general theorems. 1In
particular, in the last two chapters and the appendix: no part of
the results included therein has been published before. They con-
stitute an outline of the study of invariants with respect to linear
transformations (of B-spaces). In particular, Chapter XII includes
the definition and analysis of the properties of linear dimension,
which in these spaces plays a rdle analogous to that of dimension in
the usual sense in euclidean spaces.

Results and problems, which, for want of space, have not been
considered, are discussed briefly in the Remarks at the end of the
book. Some further references are also to be found there. In gen-
eral, except in the Introduction or, rather, its accompanying Remarks
at the end of the book, I do not indicate the origin of theorems
which either I consider too elementary or else are proved here for
the first time.

Some more recent work has appeared and continues to appear in the
periodical Studia Mathematica, whose primary purpose is to present
research in the area of functional analysis and its applications.

I intend to devote a second book, which will be the sequel to the
present work, to the theory of other kinds of functional operators,
using topological methods extensively.

In conclusion, I would like to express my sincere gratitude to all
those who have assisted me in my work, in undertaking the translation
of my Polish manuscript, or helping me in my labours with their
valuable advice. Most particularly, I thank H. Auerbach for his
collaboration in the writing of the Introduction and S. Mazur for his
general assistance as well as for his part in the drafting of the
final remarks.

Stefan Banach

Lwéw, July 1932
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Introduction

A. THE LEBESGUE - STIELTJES INTEGRAL

We assume the reader is familiar with measure theory and the
Lebesgue integral.

§1. Some theorems in the theory of the Lebesgue integral.

If the measurable functions z,(¢) form a (uniformly) bounded
sequence and the sequence (xn(t) converges almost everywhere in a
closed interval [a,b] to the function x(¢), then

b b
(1) lim [z, (t)dt = [z(t)dt.
n+o q a
More generally, if there exists a summable function ¢(t) 2 0 such
that |z, (¢)| s ¢(¢t) for 2=1,2,..., the limit function is also summ-
able and (1) is still satisfied.
If the functions z,(¢t) are summable in [a,b] and form a non-
decreasing sequence which converges to the function z(t¢), then (1)
holds, when the function z(¢) is summable, and

b
lim [z, (t)dt = +=

na>o q

otherwise.
1f the sequence (z,(t)) of pﬂ‘-power summable functions (p 21)
converges almost everywhere to the function x(t) and if

b
[lz, (t)|Pdt < k  for n=1,2,...,
a

the function z(t) is also.pth-power summable.

§2. Some inequalities for pth-power summable functions.

The class of functions which are pth-power summable (p> 1) in
[a,b] will be denoted by LP. To the number p., there corresponds
the number g, connected with p by the equation 5+ Zz=1, and known as
the conjugate exponent of p. For p=2, we have equally q= 2.

If x(t) € LP and y(¢t) € 19, the function z(t)y(t) is summable and
its integral obeys the inequality

< (z|m|pdt)é (ilqudt)é .

In particular, we therefore have for p= 2:

¢ (fxrae)’ . (fueae)

b
Ifxydt
a

b
Ifxydt
a
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If the functions z(t) and y(t) belong to LP, so does the function
x(t) + y(t) and we have:

(e s = (floraef « (furescy

These inequalities are analogues of the following arithmetic

inequalities:
1 1
n = n =
s (2 laiﬂ’)".( Lipd)
1=1 =1

(1 tagen Pl s (L e B e (Lie,12Y,

=1

—
._.

of which the first yields, for p=2, the well-known Schwarz

inequality:
n 4 /n 4
2 2
izlaibl L a ) .Qzlbi) s

For every pth—power summable function (p2 1) and every € > 0 there
exists a continuous function ¢(t) such that

b
[la=-¢|P < e.
a

§3. Asymptotic convergence.

The sequence (z,(t)) of measurable functions defined on some set is
said to be asymptotically convergent (or convergent in measure) to
the function x(t) defined on the same set, if for each >0

lim m[{t:lxn(t)-x(t)|> €}) = o,
n+o

where m(4) stands for the (Lebesgue) measure of the set 4.

A sequence (xn(t)] which is asymptotically convergent to the
function x(t) always has a subsequence which converges pointwise to
this function almost everywhere.

For a sequence (x,(t)) to be asymptotically convergent, it is
necessary and sufficient that, for each €> 0,

lim m({t:|x;(t) -z (£) | > €}) =
7, ko )
§4. Mean convergence.

A sequence (x,(t)) of pt -power summable functions (p 2 1) in [a,b]
is said to be pth - power mean convergent to the p th _ power summable
function x(t) if

lim j|m () - z(¢t)|Pdt = o.
n*o© q

A necessary and sufficient condition for such a function z(t) to
exist is that

lim f]:x: (¢) =z, (¢) [Pdt = o.
T,k+> a
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The function z(t) is then uniquely defined in [a,b], up to a set of
measure zero.

A sequence of functions which converges in mean to a function x(t)
is also asymptotically convergent to this function and therefore
(c.f. §3) has a subsequence which converges pointwise to the same
function almost everywhere.

§5. The Stieltjes Integral.

Let x(t) be a continuous function and a(¢t) a function of bounded
variation in [a,b]. By taking a partition of the interval [a,b] into
subintervals, using the numbers

a=t, <t <t,<...< tn =b

and choosing an arbitrary number 6; in each of these subintervals, we
can, by analogy with the definition of the Riemann integral, form the
sum

n
5= 73 x(0,) [alt;) - alt,

L )] where ti 2 ei 2t

=4 i-1°

One shows that for every sequence of subdivisions, for which the
length of the largest subinterval tends to 0, the sums S converge to
a limit which is the same for all such sequences; this limit is
denoted by

b
Jz(t)da(t)
a

and is called a Stzeltjes integral.
This integral has the following properties:

b a
Jz(t)da(t) = -[z(t)da(t),
a b

b c c
fr(t)da(t) + [x(t)da(t) = [z(t)da(t),
a b a

b b b
Jle, (2) + z, (t)1da(t) = [z, (t)da(t) + [z,(t)da(t).
a a a
The first mean value theorem here takes the form of the inequality
b
Jz(t)da(t)| < MV,
a

where M denotes the supremum of the absolute value |z(t)| and V the
total variation of the function a(t) in [a,b].

If the function a(z) is absolutely continuous, the Stieltjes integ-
ral can be expressed as a Lebesgue integral as follows:

b b
Je(t)da(t) = [x(t)a’ (t)dt.
a a

If a(t) is an increasing function (i.e. a(t’) < a(t”) whenever
ast’<t"<b) and if, for each number s€ [a(a),a(b)], one puts

B(s) = sup({t:s2ait)l}),
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one obtains:

b a (D)
(2) Je(t)da(t) = [ x[B(s)]lds.
a a(a)

Proof. We have, by definition of B(s):
(3) Bla(t)] = ¢ for a £t < b.

Since B(s) is increasing, by hypothesis, and takes all values in
the interval [a,b] where, by (3), a=B8[la(a)] and b=Bla(b)], it is a
continuous function. It follows that the function x[B(s)] is contin-
uous as well.

Consider a subdivision § of [a,b] given by the numbers a =t, < ¢, <
cee £ %1= b and put a(t.)= ei for 2=1,2,...,n. We have

f z[B(s))ds = (o, -6, )=z(6)),
051

- ’
where eé— B(sé) and ei_l < 9 et Clearly B(6.

Bw')

11

By (3) we have B(8, ) = B[a(t ()1 =t, , and similarly 8(6 ) =t..
Consequently
t., S6.<t.,
-1 z T
so that
I, = x(6]) lalt)) - alt, )],
whence
a(b) n n
(4) | zle(e)lds = ] I, =] «=(0})[alt) -ale, )].
a(a) =1 =1

Now, since this last sum tends to fﬁx(t)da(t) when the maximum

length of the intervals of the subdivision § tends to 0, the equality
(4) yields (2), g.e.d.

This established, we now allow a(t) to be any function of bounded
variation. Such a function a(t) can always be written as a differ-
ence a, (t) = a,(t) of two increasing functions a, (t) and a,(t);
denoting as before the corresponding functions by B, (s) and B, (s),
we obtain

a, (b) a, (b)
Ix(t)du(t) jz(t)dul(t)— jx(t)da (¢) = [ x[B,(s)1ds~- [ =[B,(s)]ds.
a, (a) a, (a)

If the functions z,(t) are continuous and uniformly bounded and if
the sequence (xn(t)) converges everywhere (pointwise) to a continuous
function z(t), we have, for every function a(t) of bounded variation

b b
lim [2, (t)da(t) Jz(t)da(t),

n+e q a
because
a, (b) , (b)
limf xy[B, (8)1ds = j z[B, (e)1ds,
n+® q (a) a, (a)
and

a, (B) a, (b)
lim [* =z,[B,(s)]ds = [ x[B,(s)]ds.
n+o 0, (@) a, (@
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§6. Lebesgue's theorem.

Let us note the following theorem, due to H. Lebesgue (4Annales de
Toulouse 1909).

For a sequence (xn(t)) of summable functions over [0,1] to satisfy

1
lim [a(t)z,(t)dt = 0
n+o Q

for every bounded measurable function al(t) on [0,1], it is necessary
and sufficient that the following three conditions be simultaneously
satisfied:

1° the sequence (jélxn(t)ldt] is bounded,

2° for every €> 0 there exists an n> 0 such that for every subset
H of [0,1] of measure <n, the inequality |fon(t)dt|§ € holds
for n=1,2,...,

u
3° lim [x,(t)dt = 0 for every 0Sus 1.
n+>~ 0

We shall become acquainted with other theorems of this kind later
in the book.

B. (B)-MEASURABLE SETS AND OPERATORS
IN METRIC SPACES.

§7. Metric spaces

A non-empty set F is called a metric space or D-space when to each
ordered pair (x,y) of its elements there corresponds a number d(x,y)
satisfying the conditions:

1) d(z,z) = 0, d(x,y) > 0 when = = y,

2) dlx,y) = dly,x),

3) d(x,z) s dlx,y) + d(y,=z).

The function d is called a metric and the number d(x,y) is called

the distance between the points (elements) x,y. A sequence of
points (x,) is said to be convergent, when

(5) lim d(x
p,q*>

the sequence (x,) is said to be convergent to the point x;, and we
write lim z, = x,, when
n->o

(6) lim d(zy,zy) = 0.

n-+o

p’mq) = 0;

The point x, is then known as the limit of the sequence (x,).

Remark. Sequences which are convergent in this sense are more
usually known as Cauchy sequences. [Trans.]

It is easy to see that (6) implies (5), since we always have
d(xp,xq) S d(mp,xo) + d(zo,xq).
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Consequently, a sequence convergent to a point is convergent for
this reason; of course, the converse is not always true.

A metric space with the property that every convergent sequence in
it converges to some point is said to be complete.

A metric space with the property that every (infinite) sequence of
its points has a subsequence convergent to some point is said to be
compact.

The euclidean spaces constitute examples of complete metric spaces.
We shall now describe some other important examples.

1. The set S of measurable functions in the interval [0,1]. For
each ordered pair (x,y) of elements of this set, put
1
_ lx(t) = y(t)]
d(z,y) I1+ Tz -y (0] ¢
0
It is easily verified that conditions 1) - 3) above are satisfied.
In fact, it is clear that conditions 1) and 2) are satisfied, (we do
not distinguish between functions which only differ on a set of
measure zero) and to see that condition 3) also holds, it is enough
to remark that for every pair 2f real numbers a,b one has:

la+bl . __lal . bl
T+ la+bl = 1T + lal 1T + [b]

Thus "metrised", the set S therefore becomes a metric space; this
space is complete, since convergence of a sequence (xp) of its points
(to a point x,) means convergence in measure of the sequence of
functions (x,(t)) (to the function = (¢)) in [0,1].

2. The set s of all sequencz2s of numbers. For each ordered pair
(x,y) of its elements, put

<o

- 1 -n
dz,y) = 1 — . __1&n7 Ml

nieg 2" (1 + lgy = ngl)
where, as in all the examples of sequence spaces, x = (£,) and

= (n,).

The set s then becomes a comdlete metric space. In fact, converg-
ence of a sequence of points (rp) and its convergence to a point z
here mean (putting w = (Efm) and z, = (£,)) that for each natural
number n, each of the sequences 5#“ is convergent, and is converg-
ent to §,;, respectively, as m tends to infinity.

3. The set M of bounded measurable functions in [0,1]. If one
puts, for each pair x,y of its elements

d(x,y) = ess sup|z(t) -y(t)]|,
Ists1

one obtains a complete metric space. Convergence of a sequence of
points (z,) ( to a point x;, raspectively) here means uniform con-
vergence almost everywhere in [0,1] of the sequence of functions
(zn(t)) (to the function z,(t)).

4. The set m of bounded sequences of numbers. Putting

d(x:y) = sup Ign_nnl
15n

one clearly obtains from m a complete metric space.

5. The set C of continuous functions in [0,1]. For each pair z,y
of its elements put

d(x,y) = max |z(t) -y(t)].
0sts1



