AAP Research Notes on Nanoscience & Nanotechnology

Foundations of Nanotechnology

Volume 3
Mechanics of Carbon Nanotubes

Saeedeh Rafiei

FOUNDATIONS OF NANOTECHNOLOGY

VOLUME 3 MECHANICS OF CARBON NANOTUBES

Saeedeh Rafiei

常州大学山书馆藏书章

Apple Academic Press Inc. 3333 Mistwell Crescent Oakville, ON L6L 0A2 Canada

Apple Academic Press Inc. 9 Spinnaker Way Waretown, NJ 08758 USA

©2015 by Apple Academic Press, Inc.

Exclusive worldwide distribution by CRC Press, a member of Taylor & Francis Group

No claim to original U.S. Government works Printed in the United States of America on acid-free paper

International Standard Book Number-13: 978-1-77188-076-3 (Hardcover)

All rights reserved. No part of this work may be reprinted or reproduced or utilized in any form or by any electric, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publisher or its distributor, except in the case of brief excerpts or quotations for use in reviews or critical articles.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission and sources are indicated. Copyright for individual articles remains with the authors as indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors, editors, and the publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors, editors, and the publisher have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint.

Trademark Notice: Registered trademark of products or corporate names are used only for explanation and identification without intent to infringe.

Library of Congress Control Number: 2015938274

Library and Archives Canada Cataloguing in Publication

Foundations of nanotechnology.

(AAP research notes on nanoscience & nanotechnology book series)

Contents: Volume 3. Mechanics of carbon nanotubes / Saeedeh Rafiei.

Includes bibliographical references and index.

ISBN 978-1-77188-076-3 (v. 3 : bound)

1. Nanotechnology. I. Series: AAP research notes on nanoscience & nanotechnology book series

T174.7.F69 2014

620'.5

C2014-905376-2

Apple Academic Press also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic format. For information about Apple Academic Press products, visit our website at www.appleacademicpress.com and the CRC Press website at www.crcpress.com

FOUNDATIONS OF NANOTECHNOLOGY

VOLUME 3 MECHANICS OF CARBON NANOTUBES

ABOUT AAP RESEARCH NOTES ON NANOSCIENCE & NANOTECHNOLOGY

AAP Research Notes on Nanoscience & Nanotechnology reports on research development in the field of nanoscience and nanotechnology for academic institutes and industrial sectors interested in advanced research.

Editor-in-Chief: A. K. Haghi, PhD

Associate Member of University of Ottawa, Canada;

Member of Canadian Research and Development Center of Sciences and Cultures email: akhaghi@yahoo.com

Editorial Board:

Georges Geuskens, PhD

Professor Emeritus, Department of Chemistry and Polymers, Universite de Libre de Brussel, Belgium

Vladimir I. Kodolov, DSc

Professor and Head, Department of Chemistry and Chemical Technology, M. I. Kalashnikov Izhevsk State Technical University, Izhevsk, Russia

Victor Manuel de Matos Lobo, PhD

Professor, Coimbra University, Coimbra, Portugal

Richard A. Pethrick, PhD, DSc

Research Professor and Professor Emeritus, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, Scotland, UK

Eli M. Pearce, PhD

Former President, American Chemical Society; Former Dean, Faculty of Science and Art, Brooklyn Polytechnic University, New York, USA

Mathew Sebastian, MD

Senior Consultant Surgeon, Elisabethinen Hospital, Klagenfurt, Austria; Austrian Association for Ayurveda

Charles Wilkie, PhD

Professor, Polymer and Organic Chemistry, Marquette University, Milwaukee, Wisconsin, USA

BOOKS IN THE AAP RESEARCH NOTES ON NANOSCIENCE & NANOTECHNOLOGY BOOK SERIES

Nanostructure, Nanosystems and Nanostructured Materials:

Theory, Production, and Development

Editors: P. M. Sivakumar, PhD, Vladimir I. Kodolov, DSc, Gennady E. Zaikov, DSc, and A. K. Haghi, PhD

Nanostructures, Nanomaterials, and Nanotechnologies to Nanoindustry

Editors: Vladimir I. Kodolov, DSc, Gennady E. Zaikov, DSc, and A. K. Haghi, PhD

Foundations of Nanotechnology:

Volume 1: Pore Size in Carbon-Based Nano-Adsorbents

A. K. Haghi, PhD, Sabu Thomas, PhD, and Moein MehdiPour MirMahaleh

Foundations of Nanotechnology:

Volume 2: Nanoelements Formation and Interaction

Sabu Thomas, PhD, Saeedeh Rafiei, Shima Maghsoodlou, and Arezo Afzali

Foundations of Nanotechnology:

Volume 3: Mechanics of Carbon Nanotubes

Saeedeh Rafiei

ABOUT THE AUTHOR

Saeedeh Rafiei

Saeedeh Rafiei is a professional textile engineer and is currently a Research Scholar at Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy. She earned a BSc and MSc in Textile Engineering and has published several papers in journals and international conferences.

LIST OF ABBREVIATIONS

AACVD Aerosol Assisted Chemical Vapor Deposition

Anodized Aluminum Oxide AAO Atomistic-Based Continuum ABC Activated Carbon Fibers **ACFs**

Activated Carbons ACS

Atomic-Force Microscope **AFM**

APCVD Atmospheric-Pressure Chemical Vapor Deposition

ASFEM Atomic-Scale Finite Element Method

BCC **Body-Centered Cubic** BD **Brownian Dynamics**

Born-Oppenheimer Approximation BOA

CBR Cauchy-Born Rule C-CCarbon-Carbon

Catalytic Chemical Vapor Deposition CCVD

CG Conjugate Gradient Cahn-Hilliard-Cook CHC Carbon Nanotubes **CNTs**

CRS Compressed Row Storage CVD Chemical Vapor Deposition DC-PECVD Direct Current -PECVD DFT **Density Functional Theory** Diglycidyl Ether of Bisphenol A

Dynamic Mechanical Thermal Analyzer **DMTA**

Dissipative Particle Dynamics DPD **ECBR** Exponential Cauchy-Born Rule Electron-Donor-Acceptor EDA

EMI Electro Magnetic Induction **ERM** Effective Reinforcing Modulus

Face-Centered Cubic **FCC** FEM Finite Element Method

Force Field FF

DGEBA

Ferrum-Hydrogen FH

xii List of Abbreviations

GAC Granular Activated Carbon GDEs Geodesic Differential Equations

GNFs Graphite Nano fibers

HFCVD Hot-Filament Chemical Vapor Deposition

H-T Halpin-Tsai

ISS Interfacial Shear Strength

LB Lattice Boltzmann
LJ Lennard-Jones
MC Monte Carlo

MD Molecular Dynamics

MH Multi-scale Homogenization

MM Molecular Mechanics
MM Molecular Mechanics

MPECVD Microwave Plasma Chemical Vapor Deposition

MWNT Multi-Walled Carbon Nano Tube

MWPECVD Microwave Plasma Enhanced Chemical Vapor Deposition

NM Newtonian Mechanics

ODEs Ordinary Differential Equations
OLED Organic Light Emitting Diodes
PAC Powdered Activated Carbon

PB Prussian Blue

PCB Printed Circuit Board
PE Plasma Enhanced

PECVD Plasma Enhanced Chemical Vapor Deposition

PLA Polylactic Acid

PLD Pulsed Laser Deposition PMMA Poly (Methyl Methacrylate)

PPV Phenylenevinylene
PSNT Polystyrene Target
QM Quantum Mechanics
QM Quantum Mechanics

RF-CVD Radio Frequency Chemical Vapor Deposition

RVE Representative Volume Element RVE Representative Volume Element

SD Steepest Descent

SOCs Synthetic Organic Compounds

SUSHI Simulation Utilities for Soft and Hard Interfaces

SWNT Single-Walled Carbon Nanotube

List of Abbreviations xiii

TB Tight Binding

TDGL Time-Dependent Ginsburg-Landau

TETA TriethyleneTetramine

TPD Temperature-Programmed Desorption

T–W Tandon–Weng vdW van der Waals

VGCF Vapor Grown Carbon Fiber

LIST OF SYMBOLS

A set of all the atoms of the sheet a translational period of group L

a, and a, hexagonal lattice

B body force per unit undeformed area

B set of all the binary bonds between pairs of adjacent

atoms

C set of all the ordered couples of adjacent bonds

C stiffness tensor
D dissociation energy

E function of spectroscopic constants

F force vector

F force applied to the cross-sectional area

H(i) and H(j) Hamiltonian associated with the original and new

configuration

n, m number of steps along the unit vectors

P non-equilibrium force vector
Pi momentum of particle i
Q empirical dielectric constant

S average compliance

T torque acting at the end of an SWNT total torque applied on the nanotubes

Vnb continuous Van der Waals energy double density

Greek Symbols

α rotational angle at ends of beam

 $A_0 = a_{CC}$ equilibrium bond length

B and B Euclidean bases

B_X ball centered at X with a radius that is function of potential

cut-off radius

 $B_{b[\psi]}$ vector related to the bond in Ω diameter at the energy ground bond stretching increment

xvi List of Symbols

 ΔL axial stretching deformation Δl difference in length after the load

ΔU change in the sum of the mixing energy and the chemical

potential of the mixture

 $\Delta\beta$ relative rotation between the ends of the beam

 $\varepsilon_{\alpha\beta}$ mid-surface strains

Em Young's modulus of the filler Ef Young's modulus of matrix

ε predefined tolerance

H

 $\overline{F}_{i}(t)$ force acting on the ith atom

 F^c conservative force of particle j acting on particle i, γ and

σ are constants initial length

J_o cross-sectional polar inertia of the SWNT

k, k, and k, bond stretching force constant

 k_1 and k_p stiffness coefficients KB Boltzmann constant k_0 length of the tube

length on graphene sheet

length at energy ground for the tube

r₀ carbon-carbon distance

 r_{ij} distance between the atoms i and j

r atomic position

 θ_{iik} angle between bonds i - j and i - k,

 θ angle of twist

 v_f volume fraction of filler v_0 Poisson's ratio of the matrix

 U^{a} , U^{b} and U^{c} energies associated with truss elements

UvHookian potential energy U^{vdw} covalent bond stretching U_{r} bond stretch interaction U_{θ} bond angle bending U_{ϕ} dihedral angle torsion

 U_{ω}^{Ψ} improper (out-of-plane) torsion

U_{vdw} non-bonded van der Waals interaction

Uv Hookian potential energy

 U_r and U_A stretching energy U_θ and U_M bending energy

*** 1 ***	2
U_{t} and U_{T}	torsional energy
V_R and V_A	repulsive and attractive pair terms
Vp(r)	potential function for bend stretch
vel	velocity function of the atom a • A
$\psi^{(0)}$	initial guess of equilibrium state
$\psi = \psi_e$	harmonic oscillator component
Ψ_0	collision diameter
ν	Poisson ratio
ф	stands for double contraction of tensors
φ(m)	Euler function
3	dislocation energy
$\zeta_{\rm f}$	shape parameter depending on filler geometry
(-γP)	dissipative
$(\sigma \zeta (t))$	random force terms
$\zeta(t)$	Gaussian random noise term
$\sigma(x)$	shape parameter
$\sigma(x)$	stress field
σ_{v}	vertical mirror plane
Λ	vibrational quantum number