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Foreword

How do you become an expert? The answer is the same in all the fields I've seen:

1. Learn the basics.
2. Study the same material again—but this time, concentrate on the details you didn’t
realize were important the first time around.

If you pick the right details and master them so thoroughly that you no longer have to
think about them, you will be much closer to being an expert. However, until you've
become an expert, how do you know which details to pick? You’ll learn a lot faster,
and enjoy it more, if someone who’s already been there picks the right details for you.

For example, I once took a photo workshop given by a fine photographer named
Fred Picker. He told us that the only two hard parts of photography were where to put
the camera and when to press the button. He then spent most of the workshop teaching
us technical details about exposure, processing, and printing—details we had to
absorb completely before we could control our photographs well enough for it even to
make sense for us to concentrate on the two “hard” parts.

A particularly entertaining way to learn about the details of C++ programming is
to try to answer questions about C++ programs. For example:

s Do f(a++); and f(a); ++a; have the same effect?

« Can you use an iterator to change the contents of a set?

« Suppose you’re using a vector named v that has grown to use an uncomfortable
amount of memory. You’d like to clear the vector and return that memory to the
system. Will calling v.clear() do the trick?

You have probably guessed that the answers to these seemingly obvious questions
must be no—otherwise I wouldn’t have asked them—but do you know why the
answers are no? Are you sure?

This book answers these questions and many other thoughtfully chosen questions
about seemingly ordinary programs. There aren’t many other books like it—except, of



course, its predecessor, Exceptional C++. Most C++ books that claim to be
“advanced” are either about specialized topics—which is fine if you want to master
those particular topics, but not if you are trying to look more deeply into everyday
programs—or they use the word “advanced” merely to attract readers.

Once you understand these questions and answers thoroughly, you will no longer
have to think so much about the details when you program; you will be free to concen-
trate on the problems you are really trying to solve.

Andrew Koenig
June 2001



Preface

The Greek philosopher Socrates taught by asking his students questions—questions
designed to guide them and help them draw conclusions from what they already knew,
and to show them how the things they were learning related to each other and to their
existing knowledge. This method has become so famous that we now call it the
“Socratic method.” From our point of view as students, Socrates’ approach involves
us, makes us think, and helps us relate and apply what we already know to new infor-
mation.

This book takes a page from Socrates, as did its predecessor, Exceptional C++
[Sutter00]. It assumes you’re involved in some aspect of writing production C++ soft-
ware today, and uses a question-answer format to teach you how to make effective use
of standard C++ and its standard library with a particular focus on sound software
engineering in modern C++. Many of the problems are drawn directly from experi-
ences I and others have encountered while working with production C++ code. The
goal of the questions is to help you draw conclusions from things you already know as
well as things you’ve just learned, and to show how they interrelate. The puzzles will
show how to reason about C++ design and programming issues—some of them com-
mon issues, some not so common; some of them plain issues, some more esoteric; and
a couple because, well, just because they’re fun.

This book is about all aspects of C++. I don’t mean to say that it touches on every
detail of C++—that would require many more pages—but rather that it draws from
the wide palette of the C++ language and library features to show how apparently
unrelated items can be used together to synthesize novel solutions to common prob-
lems. It also shows how apparently unrelated parts of the palette interrelate on their
own, even when you don’t want them to, and what to do about it. You will find mate-
rial here about templates and namespaces, exceptions and inheritance, solid class
design and design patterns, generic programming and macro magic—and not just as
randomized tidbits, but as cohesive Items showing the interrelationships among all of
these parts of modern C++.
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What's “More?”

More Exceptional C++ continues where Exceptional C++ left off. This book follows
in the tradition of the first: It delivers new material, organized in bite-sized Items and
grouped into themed sections. Readers of the first book will find some familiar section
themes, now including new material, such as exception safety, generic programming,
and memory management techniques. The two books overlap in structure and theme,
not in content.

Where else does More Exceptional C++ differ? This book has a much stronger
emphasis on generic programming and on using the C++ standard library effectively,
including coverage of important techniques such as traits and predicates. Several
Items provide in-depth looks at considerations to keep in mind when using the stan-
dard containers and algorithms; many of these considerations I've not seen covered
elsewhere. There’s a new section and two appendixes that focus on optimization in
single- and multithreaded environments—issues that are now more than ever of prac-
tical consequence for development shops writing production code.

Versions of most Items originally appeared in Internet and magazine columns, par-
ticularly as Guru of the Week [GotW] issues #31 to 62, and as print columns and arti-
cles I've written for C/C++ Users Journal, Dr. Dobb’s Journal, the former C++
Report, and other publications. The material in this book has been significantly
revised, expanded, corrected, and updated since those initial versions, and this book
(along with its de rigueur errata list available at www.gotw.ca) should be treated as the
current and authoritative version of that original material.

What | Assume You Know

I expect that you already know the basics of C++. If you don't, start with a good C++
introduction and overview. Good choices are a classic tome like Bjarne Stroustrup’s
The C++ Programming Language [Stroustrup00], or Stan Lippman and Josée
Lajoie’s C++ Primer, Third Edition [Lippman98]. Next, be sure to pick up a style
guide such as Scott Meyers’ classic Effective C++ books [Meyers96] [Meyers97]. I
find the browser-based CD version [Meyers99] convenient and useful.

How to Read This Book

Each Item in this book is presented as a puzzle or problem, with an introductory
header that resembles the following:
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Item #: THEe Toric ofF THis PuzzLe DirricuLty: X

The topic tag and difficulty rating gives you a hint of what you’re in for. Note that the
difficulty rating is my subjective guess at how difficult I expect most people will find
each problem, so you may well find that a “7” problem is easier for you than some “5”
problem. Since writing Exceptional C++, I've regularly received e-mail saying that
“Item #N is easier (or harder) than that!” It’s common for different people to vote
“easier!” and “harder!” for the same Item. Ratings are personal; any Item’s actual dif-
ficulty for you really depends on your knowledge and experience and could be easier
or harder for someone else. In most cases, though, you should find the rating to be a
good rule-of-thumb guide to what to expect.

You might choose to read the whole book front to back; that’s great, but you don’t
have to. You might decide to read all the Items in a section together because you’re
particularly interested in that section’s topic; that’s cool, too. Except where there are
what I call a “miniseries” of related problems which you’ll see designated as “Part 1,”
“Part 2,” and so on, the Items are pretty independent, and you should feel free to jump
around, following the many cross-references among the Items in the book, as well as
some references to Exceptional C++. The only guidance I'll offer is that the miniser-
ies are designed to be read consecutively as a group; other than that, the choice is
yours.

Namespaces, Typename, References, and
Other Conventions

I make quite a few recommendations in this book, and I won’t give you guidelines that
tell you to do something I don’t already do myself. That includes what I do in my own
example code throughout this book. I'll also bow to existing practice and modern
style, even when it really makes no material difference.

On that note, a word about namespaces: In the code examples, if you see a using-
directive at file scope in one example and at function scope in another example a few
pages or Items later, there’s no deeper reason than that’s what felt right and aestheti-
cally pleasing to me for that particular case; for the rationale, turn to Item 40. In the
narrative text itself, I've chosen to qualify standard library names with std:: when I
want to emphasize that it’s the standard facility I'm talking about. Once that’s estab-
lished, I’ll generally switch back to using the unqualified name.

When it comes to declaring template parameters, I sometimes come across people
who think that writing class instead of typename is old-fashioned, even though
there’s no functional difference between the two and the standard itself uses class
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most everywhere. Purely for style, and to emphasize that this book is about today’s
modern C++, I've switched to using typename instead of class to declare template
parameters. The only exception is one place in Item 33, where I quote directly from
the standard; the standard says class, so I left it in there.

Unless I call something a “complete program,” it’s probably not. Remember that
the code examples are usually just snippets or partial programs and aren’t expected to
compile in isolation. You’ll usually have to provide some obvious scaffolding to make
a complete program out of the snippet shown.

Finally, a word about URLs: On the Web, stuff moves. In particular, stuff I have no
control over moves. That makes it a real pain to publish random Web URLSs in a print
book lest they become out of date before the book makes it to the printer’s, never mind
after it’s been sitting on your desk for five years. When I reference other people’s arti-
cles or Web sites in this book, I do it via a URL on my own Web site, www.gotw.ca,
which I can control and which contains just a straight redirect to the real Web page. If
you find that a link printed in this book no longer works, send me e-mail and tell me; I’1l
update that redirector to point to the new page’s location (if I can find the page again) or
to say that the page no longer exists (if I can’t). Either way, this book’s URLs will stay
up-to-date despite the rigors of print media in an Internet world. Whew.
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