PEARSON
R ASAOL

Addison
Wesley

lore Exceptiona

40 New Engineering Puzzles, Programming
Problems, and Solutions

(FIZHR)

(3%() Herb Sutter =

More Exceptional C++

(ZR3ZhR)

40 New Engineering Puzzles, Programming Problems, and Solutions
(32) Herb Sutter 3

BB T b i ORR i

¥ China Machine Press

English reprint edition copyright © 2006 by Pearson Education Asia Limited and
China Machine Press.

Original English language title: More Exceptional C++: 40 New Engineering

Puzzles, Programming Problems, and Solutions (ISBN 0-201-70434-X) by Herb Sutter,
Copyright © 2002.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

AA535 3CRZ ENRR i Pearson Education Asia Ltd #2AUHLAK Tolk HARFE SRR AR . R
LHREBIFR, AHRUMEMG A GISDEERBNE,

UBRTF A NRILFIENEN (R G4E o EHFE . W BITERE fib E 4 EHhX)
WERT.

A A5 5 H W A Pearson Education (S4B & HRER) BOCHhinE, LiREH
S,

WA, R,

FHEREME LRTRIERMESR

ABFENEICS . EF: 01-2006-0526
EHER&ME (CIP) ¥iE

More Exceptional C++ (3&3ChR) / () 2% (Sutter, S.) 2. —Jtxt. YT
kR £, 2006.3

(C++iktit#H B4%)

543X : More Exceptional C++: 40 New Engineering Puzzles, Programming
Problems, and Solutions

ISBN 7-111-18370-3

I.M- I ILEE-BFEH-%3X V. TP312
Hh R A B B 1 CIPE R+ (2006) 550046832
HUBR Tl R Gl i 3 X 7 09 EE k#9225 B BC4RAS 100037)

RS BiRE
AL 4= L HESLENR T ENRI - Brieds kb s RATRT R AT
20064E3 A8 1R 1RENRI

718mm x 1020mm 1/16 - 18.75E[15k
EN%c. 0001-3 0005
EHr: 36.005C

JLgAS, A EI. B, Ghol, At kiTEHiFR
AW hek. (010) 68326294

‘C+HRITIRBAE” MAPEIS

H C++ A I H AR ISO/ANSI C++4xifi (A H:LASK, LABjarne Stroustrup i & BIC++%t
Y —EARR DESRA “FiUE” BFEMERCH, LW, BRTHRET
CHIEFT FEHESD , CH+REERY B B e M DA R 7 e A il | % R 9 & AP 45 R i3 mT LA LE 3 AT
MmEMEMERE. . &% @R,

iX Sl R R AN R B BRSO AR N R R CdEARAEET, B,
e, RERLEFFHAXMNEFHE AL, UURECHIIRR LI E B E A
BRAZAMRFIZEHEAE., ENERTHIEBRKROC+H+LEE, Hux A+ RS
PEERREE. FHER—AREENEE. 28R, XEZERERLHRICH
FEOIE H 3 2RISR .

BANINA, BRFERERS. RE&EWBa). #wiFS. RELH, BROE, ¥iE%E
2GR AREFENNEMERFERBRR-TERNERGE~ LR ERE,
EA Kk, HEREMMARGEBTFRC+H+IIEKITRRN, Bk, ATLURMHE, C++
HI Rz 7K TE— B BE B AT LAST S — A B KB 7= b & ek T Fnfee e B

RTLCAEE A SR T — KR FRIC++BEE, B %E THEC++EF RN
LB, HEMRKERE EAET KBIUSRIFETC++IIET . % 1A 5 e fhiz
fi#, MC++ ML EBESR T —EmRH#ER. AmidEPES, BiENET,
Javaf KW 5 IRk ZRVER), FEKGS WL SE. 58 LrR & & meEl, &
KT “RGHRE" HC++iESWRASUBLA# —PHBAES, XthISEAF
C++HIHME T LEAE TR AR EM,

PLME Tk iR A5 o sk e Ak A E C++ “BLRIL” EEHEDBHIE, M2006
RGN —F “C++iit#HB%E" AH. XENBFRFEM. SmiE, X
VEiR& A& iEHerb SutterfTE NI E NN ZC+H+BRERXIHIRE . HEE, WEE
HEH AR C++FtE, AR AE, FmicBdmEdRag, B LN FERZE.
CEE RIS . B— AP I ARSI H, BiEgE/hHNEEA. 1
AXENPRFSEE A SR, REAOFEENIEAREAR, Hrme s hh E
C++#EBEEAFTHNE D .

i
2005512 A
ARIFEXSF
www.royaloo.com

For Giinter and Elisabeth

F =

WA A REB A ER? TERK T MBHIFTA TR & R A —FERY .

1. X Em4nil.

2. B—RFRHENEM, BEX—KREF TFHROKEIANEAZEIRIILEEZSED
40
AR RERE TE XS4 B ENNEREDRLTF A Z RGNS, RRRE
BA—MLERKT . A, EEERATRKZAET, PR a0 %058 L1255 WL 4015 E ?
WRAE NCLARPELTE LT, RFEDRRFSERE. BERE.

Bilan, FHY LSt — A AR fiFred PickerZJpUREZHFIHBE. iR
M, BERARITEEART, —RaERE, Z&MABEHRIT, # T RbERAT
43 BT BERT IR R AT 8K THRE . I TAN o EN B AR 20T —— R A BB AR T X L6
a5, WA RERIFHEREY, TUREIRRS B MFH® T LE L.

ZREEXRTFC++EFHIEE, 2—FAREAR RBHEAC+H+RBEATHIG X,
il 4«

* f(a++);F0f(a); ++a; B A MERIBERD?

» YREEME FH— &R BB Rk — setlI N AD?

s REMREEMEH D& AvEvector, B HAPINGFEELHEKELLANRIFARLY

W, RELBIERIZvector - H 5 HMANFIRLA RS, B4, v.clearOREH

£ ?

R L BRI EHUARHRBERSER “no”, &ML L A)X L[
BT, BRmEZEEMMZ “no” B2 REE?

A REIE T xR AR KR E2EOHER “SUREEIRT MRS, &
L LBEERAB—H (M4RT, ERWE (Exceptional C++) B4 . REER
& “EBR” MC++PEE, BE2RXTHINEE (RAEANRAERKEX LR EN T
MAER EEAE B # RSN, XSBAEEL), E248EE “BR™ —iF
FeWR 51 iEH HIIRER

—HEMERT XERBEEER, RERBENBKA ST 2o FA X8,
Kl D EF TEES HRROIBLERE 2 L.

Andrew Koenig
200156 R

A—_

gl B

A B 2 5 SR R Gl A) 2 A B (R 3 AT B . RSk R E R TS I B4,
Wb\ CaP AR HE R, SRl E/RIEESE AR R A8 kR,
Xanfa SiMEARMIREERE., XFEFEFRRMNESL, UETAHSRENFKRZ
b “HAEPIRE B . NBRIEAZENRARE, FHRRIENEFE kB IE
BAWISLER, RERMBZ, #BHIATEZRH A S AR LKA i,

45 5 HAktk % (Exceptional C++) [Sutter00]—#%, % THIEPLEMIF . &
BIEREVRIE B AL B 7= S R C++ R R FE Lo 450, & (8 A 19) & WO T X B PR dn fr] A 2
(i FAARBEC++ R AR E, FAe R TAEIRRC++Hh LR LMK E TR, RLM
SHABERETRMEMAERS = RRKC+H+RIBEFHHR BN, RGN BIRET
BRI B LA R R B AR E P B HER, FRRENZZaA kR,
o Uk R]) /R R AR An (Rl X C++ 3% T Fndm AR R @ i AT B M 40 7 o HE P S0 2 IL DR
B, AENABLERL, AEBMREe, FElRER, o8 —%EBRARE R
(A (EST i e B e o e

ARHEC++IIL HER, RNEBHAREEME TC++E—441% (A5
EELELEN), MAECANC+H+IESERN MO R IEREM, MRE
RAELTE R MR M anfal W S & (3 AR, AT T2 Bt X 8 AL () i F 37 S A R o 5 6 .
ABBER T IBEFE LT XA E S A AT XA (BMEEERAFZENZEA
H4kB) DAk anfiibiix ek, IREEABPFIXRTERELFZH. BES
gk, EHEHEZITESRIMER, ZARERSZNERBERENE. BIFHELRE
L FEr A B, mALRANERANEKOENR, RERRAARC++H A
XEEER sy Z A E R A .

{1 “more”

{More Exceptional C++)» M (Exceptional C++) {5/ ELRI1T. IB4K
TE-ABHER: BUE/MEERNEFHALIEN, HoRax &k A0 £ 8 9
MEY, UA8Hmii. Bl - APNiEESRA - LABTNENMEE, ~E8
ERETHNE, flinrEice. ZREERURNFEERERSE. XRABESHSM
FEmiENE LAEE 24,

{More Exceptional C++) LA A/ ARl ZAWE? #4558 fnR iz B 4 e fn e 2o i
HC++brE e, A4 ENFFAEREIR (traits) FiH(Ei (predicates) XFERIEZE A
e, —Se&FRAEARER S MBE LN EEETRE TEANE, HhiF2iE
BEHREGEEARENCEINARE. —THEDTMRENHRER FRERBMZEER
BT, ¥ TFRE-HERBHUFRATMS, XEVCHEIE LLLARAE T EER

vii
BAEERNEEE L.
PHKREZHFFEMHATREMRELR L, RHHA “Guru of the Week”
[GotW]HIIL 31 ~62, LLKRFH {C/C++ Users Journal), {Dr. Dobb’s Journal)),
€C++ Report) (E45F]) CARKbHRPBENELIICE, 5EMRAMHEL, 4
BRI 2 KiEEiT. ¥78. REMEFH, AmAH (ERwww.gotw.ca EAH]
SR ENIRFR) M B ARTEARLE R 46 MR B BT BURUAR .

REREMRESEMEN

BYAMRCLER TCr+EMMIN, MRIREER, FTLAN—A I 28 M FE 5 v
MIC++4F BT 4a%£>] . & Bjarne Stroustrupff) {The C++ Programming Language) (3
k) [Stroustrup00]=&;Stan LippmanfiJosée Lajoie & ZEH) {C++ Primer) (Z3hR)
[Lippman98iX FEHI L BUEIEET R A EERIER: . Tk, FLEIE - FREXIEIERE,
fFl4nScott Meyersfy22 BiZE{E (Effective C++) Z7%l|[Meyers96][Meyers97], &M #E
T3 %3 2% I CD e [Meyers991 75 fi HSEH .

AT SR
B E—A R EBA RS S A R, A A BYERLES, AnTHR:
T RIAR R Difficulty: X

ltem##. 1%

S

PREATEE FR R R EERRIf A, EE, HESFHARRACTHMASH
NNARRA ZHEAERFEN, Bk, REGFSEIFRmE —AHEEZERAHTH
LA MEEELR SIS EE S, BMNE/E (Exceptional C++) LI, iAW
WeH|—Lom b, 5 “FENHRRROEES (KEBE#) | 7 HFFR—-AFZEME,
AREIANINA “BEE” & “ER¥E" BRREFEH. EEFRFEAMmMS, EAFKXR
LB R TFRMIRMEE, e Tt AmSNAIRERSSERE L,
R, KEEIEN TIRAIZ R BLX S B E R R EEERNAE (PWEE) 1
AN T AR,

TR VFFT L 2 R AR F A5, XREF, HIRKRSIER XML, fRLifF
P RIREANFFEREN R A &K, EARMZESN BRI, XEHER
oF. BRT#EIARA N RFT BIARLeBARLL “Part 17, “Part 27 FHF&FEKIHEMZH
KRB, P EFOEF YR, EHYRATDGETE Kk 2 A28 5| LA K&
X} (Exceptional C++) HISIH, B HibPbEIR. HME—ZEENE, BLE “NRRH
B AR L, BRie20b, anfalEike IR EL,

AFZE, typename, S5|HARHEMAE

REBPLEHTALRI, HERASGVRXFIESSE: MRXMERA CH
i F, XUFBEREEABHRA RGP BRE. BalkEREA KB
R IR, BMEA X TC 5 RAERI R .

viii

fEXHH, ALER—TAFER., ERFREBF, mRERRE—AGFFHERH—
M XHTEEEusingtg 4, MAEJLNSILNTFRKZER S —1 6 FH BB RETEED
using$§4, XHBREAEHLEBRVEE, RERAEZFENEE T, BrAEREE
&R, HFAWATESE LM, WRME. kTR FERIMEARE, WE%
%&#k40, 7EIESCH, MFMABRIFIELETIEHRIRMEE RN, e Astd:REDR
PrfEE AT, —BRSL T X —a, BEFEHEREREREAT.

RE RS EWI R, RARRES]—L Ak S classifi A & typename g i B i i ,
BRffix —# Z I HTEIhRE LRI ZE B, B An#E S B S AL E class, A0BEH T34
RA&HI%E, HARAFBRXTASROIARCHHY, KL HMEMtypenameffii -~
ReclassRFEBRSH T . B—MBISPRERZRFKIBZPHIE L, A TFIRRBEEMR
AR, PrUEfE R Rclass, RWMWBHET.

BRAE AT H EBRRBE -4 “EBOERF, EWERTEAZ. o, £
EoRGE S RERD R BRSHoMEF, JEE MM mE. A T MXLERDG
REWmEHEENERF, BFREENTE LRSS LS ARG,

BJ5, XTURLELELE—4): EWeb L, KH&zhkzhk, LHRE, RILkEE
Hl—2e N ALk L. XEBEENRIFFE EFIENFEEAIWeb URLBLE L T HIEM
. BMEZE T BRI ZAI AR URLBEELER T, EABRSFCERNPBEL
i LSEZRT . YREABPSIAMBARXESRWebsl A, RAED A CHIWeblh
A (www.gotw.ca) ERJURLIME]X —REI—FH CHIWebii R 2 BFTREEHIRY, &
RAE&XLRWeb M TIHIEE M 8548, MRMREBENRIERBHH—BEEABAR,
H BRI, BBERIZRERE, EHERFORIE (RBERERBIZM T
MiE), (B EFRIZMAEAEFE (MRERABNIE) . FTEELR, 60
URLESRFF AT, REEXA EReMHF R ENRIEAR B F2& bt G|
Brist

1k B M\ #5448 Bjarne Stroustrup, BXiffDebbie Lafferty, Tyrrell Albaugh,
Chanda Leary-Coutu, Charles Leddy, Curt Johnsonl} z Addison-Wesley [RA # H:fth 5%
By, BRSO X AT E B AN R e, R GOEA L M E AR I, b
A BR A F O VRS P T3 IX A4S Y B A B BR43 31 T KB,

EA—HANERBREED, wRFLZEXHERA. IR RYE TE/AFE
709 W R 3 B RE P A4t BRI REEE . A HEBSKRFPHXAPETE,
Bk, EAM. fFAES (HEaKBUATRKE HEERTIEF) Scott Meyers, Jan
Christiaan van Winkel, Steve Dewhurst, Dennis Mancl, Jim Hyslop, Steve Clamage,
Kevlin Henney, Andrew Koenig, Patrick McKillenl) F —26RsnZHEiRA . ik
FIHMEME IR, WAMAREARXIE, S5Miltx, i#ELERKED.

BJa, FAERMBEHRXATALK, BRRMNERBSESRSP L RKbiE—E
PEPEE TS L.

Herb Sutter
200156 A F 31 %

Foreword

How do you become an expert? The answer is the same in all the fields I've seen:

1. Learn the basics.
2. Study the same material again—but this time, concentrate on the details you didn’t
realize were important the first time around.

If you pick the right details and master them so thoroughly that you no longer have to
think about them, you will be much closer to being an expert. However, until you've
become an expert, how do you know which details to pick? You’ll learn a lot faster,
and enjoy it more, if someone who’s already been there picks the right details for you.

For example, I once took a photo workshop given by a fine photographer named
Fred Picker. He told us that the only two hard parts of photography were where to put
the camera and when to press the button. He then spent most of the workshop teaching
us technical details about exposure, processing, and printing—details we had to
absorb completely before we could control our photographs well enough for it even to
make sense for us to concentrate on the two “hard” parts.

A particularly entertaining way to learn about the details of C++ programming is
to try to answer questions about C++ programs. For example:

s Do f(a++); and f(a); ++a; have the same effect?

« Can you use an iterator to change the contents of a set?

« Suppose you’re using a vector named v that has grown to use an uncomfortable
amount of memory. You’d like to clear the vector and return that memory to the
system. Will calling v.clear() do the trick?

You have probably guessed that the answers to these seemingly obvious questions
must be no—otherwise I wouldn’t have asked them—but do you know why the
answers are no? Are you sure?

This book answers these questions and many other thoughtfully chosen questions
about seemingly ordinary programs. There aren’t many other books like it—except, of

course, its predecessor, Exceptional C++. Most C++ books that claim to be
“advanced” are either about specialized topics—which is fine if you want to master
those particular topics, but not if you are trying to look more deeply into everyday
programs—or they use the word “advanced” merely to attract readers.

Once you understand these questions and answers thoroughly, you will no longer
have to think so much about the details when you program; you will be free to concen-
trate on the problems you are really trying to solve.

Andrew Koenig
June 2001

Preface

The Greek philosopher Socrates taught by asking his students questions—questions
designed to guide them and help them draw conclusions from what they already knew,
and to show them how the things they were learning related to each other and to their
existing knowledge. This method has become so famous that we now call it the
“Socratic method.” From our point of view as students, Socrates’ approach involves
us, makes us think, and helps us relate and apply what we already know to new infor-
mation.

This book takes a page from Socrates, as did its predecessor, Exceptional C++
[Sutter00]. It assumes you’re involved in some aspect of writing production C++ soft-
ware today, and uses a question-answer format to teach you how to make effective use
of standard C++ and its standard library with a particular focus on sound software
engineering in modern C++. Many of the problems are drawn directly from experi-
ences I and others have encountered while working with production C++ code. The
goal of the questions is to help you draw conclusions from things you already know as
well as things you’ve just learned, and to show how they interrelate. The puzzles will
show how to reason about C++ design and programming issues—some of them com-
mon issues, some not so common; some of them plain issues, some more esoteric; and
a couple because, well, just because they’re fun.

This book is about all aspects of C++. I don’t mean to say that it touches on every
detail of C++—that would require many more pages—but rather that it draws from
the wide palette of the C++ language and library features to show how apparently
unrelated items can be used together to synthesize novel solutions to common prob-
lems. It also shows how apparently unrelated parts of the palette interrelate on their
own, even when you don’t want them to, and what to do about it. You will find mate-
rial here about templates and namespaces, exceptions and inheritance, solid class
design and design patterns, generic programming and macro magic—and not just as
randomized tidbits, but as cohesive Items showing the interrelationships among all of
these parts of modern C++.

xii

What's “More?”

More Exceptional C++ continues where Exceptional C++ left off. This book follows
in the tradition of the first: It delivers new material, organized in bite-sized Items and
grouped into themed sections. Readers of the first book will find some familiar section
themes, now including new material, such as exception safety, generic programming,
and memory management techniques. The two books overlap in structure and theme,
not in content.

Where else does More Exceptional C++ differ? This book has a much stronger
emphasis on generic programming and on using the C++ standard library effectively,
including coverage of important techniques such as traits and predicates. Several
Items provide in-depth looks at considerations to keep in mind when using the stan-
dard containers and algorithms; many of these considerations I've not seen covered
elsewhere. There’s a new section and two appendixes that focus on optimization in
single- and multithreaded environments—issues that are now more than ever of prac-
tical consequence for development shops writing production code.

Versions of most Items originally appeared in Internet and magazine columns, par-
ticularly as Guru of the Week [GotW] issues #31 to 62, and as print columns and arti-
cles I've written for C/C++ Users Journal, Dr. Dobb’s Journal, the former C++
Report, and other publications. The material in this book has been significantly
revised, expanded, corrected, and updated since those initial versions, and this book
(along with its de rigueur errata list available at www.gotw.ca) should be treated as the
current and authoritative version of that original material.

What | Assume You Know

I expect that you already know the basics of C++. If you don't, start with a good C++
introduction and overview. Good choices are a classic tome like Bjarne Stroustrup’s
The C++ Programming Language [Stroustrup00], or Stan Lippman and Josée
Lajoie’s C++ Primer, Third Edition [Lippman98]. Next, be sure to pick up a style
guide such as Scott Meyers’ classic Effective C++ books [Meyers96] [Meyers97]. I
find the browser-based CD version [Meyers99] convenient and useful.

How to Read This Book

Each Item in this book is presented as a puzzle or problem, with an introductory
header that resembles the following:

Xiii

Item #: THEe Toric ofF THis PuzzLe DirricuLty: X

The topic tag and difficulty rating gives you a hint of what you’re in for. Note that the
difficulty rating is my subjective guess at how difficult I expect most people will find
each problem, so you may well find that a “7” problem is easier for you than some “5”
problem. Since writing Exceptional C++, I've regularly received e-mail saying that
“Item #N is easier (or harder) than that!” It’s common for different people to vote
“easier!” and “harder!” for the same Item. Ratings are personal; any Item’s actual dif-
ficulty for you really depends on your knowledge and experience and could be easier
or harder for someone else. In most cases, though, you should find the rating to be a
good rule-of-thumb guide to what to expect.

You might choose to read the whole book front to back; that’s great, but you don’t
have to. You might decide to read all the Items in a section together because you’re
particularly interested in that section’s topic; that’s cool, too. Except where there are
what I call a “miniseries” of related problems which you’ll see designated as “Part 1,”
“Part 2,” and so on, the Items are pretty independent, and you should feel free to jump
around, following the many cross-references among the Items in the book, as well as
some references to Exceptional C++. The only guidance I'll offer is that the miniser-
ies are designed to be read consecutively as a group; other than that, the choice is
yours.

Namespaces, Typename, References, and
Other Conventions

I make quite a few recommendations in this book, and I won’t give you guidelines that
tell you to do something I don’t already do myself. That includes what I do in my own
example code throughout this book. I'll also bow to existing practice and modern
style, even when it really makes no material difference.

On that note, a word about namespaces: In the code examples, if you see a using-
directive at file scope in one example and at function scope in another example a few
pages or Items later, there’s no deeper reason than that’s what felt right and aestheti-
cally pleasing to me for that particular case; for the rationale, turn to Item 40. In the
narrative text itself, I've chosen to qualify standard library names with std:: when I
want to emphasize that it’s the standard facility I'm talking about. Once that’s estab-
lished, I’ll generally switch back to using the unqualified name.

When it comes to declaring template parameters, I sometimes come across people
who think that writing class instead of typename is old-fashioned, even though
there’s no functional difference between the two and the standard itself uses class

Xiv

most everywhere. Purely for style, and to emphasize that this book is about today’s
modern C++, I've switched to using typename instead of class to declare template
parameters. The only exception is one place in Item 33, where I quote directly from
the standard; the standard says class, so I left it in there.

Unless I call something a “complete program,” it’s probably not. Remember that
the code examples are usually just snippets or partial programs and aren’t expected to
compile in isolation. You’ll usually have to provide some obvious scaffolding to make
a complete program out of the snippet shown.

Finally, a word about URLs: On the Web, stuff moves. In particular, stuff I have no
control over moves. That makes it a real pain to publish random Web URLSs in a print
book lest they become out of date before the book makes it to the printer’s, never mind
after it’s been sitting on your desk for five years. When I reference other people’s arti-
cles or Web sites in this book, I do it via a URL on my own Web site, www.gotw.ca,
which I can control and which contains just a straight redirect to the real Web page. If
you find that a link printed in this book no longer works, send me e-mail and tell me; I’1l
update that redirector to point to the new page’s location (if I can find the page again) or
to say that the page no longer exists (if I can’t). Either way, this book’s URLs will stay
up-to-date despite the rigors of print media in an Internet world. Whew.

Acknowledgments

Many thanks to series editor Bjarne Stroustrup, and to Debbie Lafferty, Tyrrell
Albaugh, Chanda Leary-Coutu, Charles Leddy, Curt Johnson, and the rest of the
Addison-Wesley team for their assistance and persistence during this project. It’s
hard to imagine a better bunch of people to work with, and their enthusiasm and
cooperation has helped make this book everything I'd hoped it would become.

One other group of people deserves thanks and credit, namely the many expert
reviewers who generously offered their insightful comments and savage criticisms
exactly where they were needed. Their efforts have made the text you hold in your
hands that much more complete, more readable, and more useful than it would
otherwise have been. Special thanks to (in the approximate order that I received
their review comments) Scott Meyers, Jan Christiaan van Winkel, Steve Dewhurst,
Dennis Mancl, Jim Hyslop, Steve Clamage, Kevlin Henney, Andrew Koenig, Patrick
McKillen, as well as several anonymous reviewers. The remaining errors, omissions,
and shameless puns are mine, not theirs.

Finally, thanks most of all to my family and friends for always being there, during
this project and otherwise.

Herb Sutter
Toronto, June 2001

Contents

Foreword

Preface

Generic Programming and the C++ Standard Library
Item 1: Switching Streams

Item 2: Predicates, Part 1: What remove () Removes
Item 3: Predicates, Part 2: Matters of State

Item 4: Extensible Templates: Via Inheritance or Traits?
Item 5: Typename

Item 6: Containers, Pointers, and Containers That Aren’t
Item 7: Using Vector and Deque

Item 8: Using Set and Map

Item 9: Equivalent Code?

Item 10: Template Specialization and Overloading

Item 11: Mastermind

'Optimization and Performance
Item 12: Inline
Item 13: Lazy Optimization, Part 1: A Plain Old String
Item 14: Lazy Optimization, Part 2: Introducing Laziness
Item 15: Lazy Optimization, Part 3: Iterators and References
Item 16: Lazy Optimization, Part 4: Multithreaded Environments

Exception Safety Issues and Techniques

Item 17: Constructor Failures, Part 1: Object Lifetimes

Item 18: Constructor Failures, Part 2: Absorption?

Item 19: Uncaught Exceptions

Item 20: An Unmanaged Pointer Problem, Part 1: Parameter Evaluation

ix
Xi

11
19
32
36
46
53
59

69

83
83
86
90
94

103

115
115
119
126
132

Xvi

Item 21: An Unmanaged Pointer Problem, Part 2: What About auto_ptr? 135
Item 22: Exception-Safe Class Design, Part 1: Copy Assignment 141
Item 23: Exception-Safe Class Design, Part 2: Inheritance 149
Inheritance and Polymorphism 155
Item 24: Why Multiple Inheritance? 155
Item 25: Emulating Multiple Inheritance 159
Item 26: Multiple Inheritance and the Siamese Twin Problem 162
Item 27: (Im)pure Virtual Functions . 167
Item 28: Controlled Polymorphism 172
Memory and Resource Management : 175
Item 29: Using auto_ptr 175
Item 30: Smart Pointer Members, Part 1: A Problem with auto_ptr 182
Item 31: Smart Pointer Members, Part 2: Toward a ValuePtr 187
Free Functions and Macros 201
Item 32: Recursive Declarations . 201
Item 33: Simulating Nested Functions 206
Item 34: Preprocessor Macros 215
Item 35: #Definition 218
Miscellaneous Topics 223
Item 36: Initialization 223
Item 37: Forward Declarations 226
Item 38: Typedef 228
Item 39: Namespaces, Part 1: Using-Declarations and Using-Directives 231
Item 40: Namespaces, Part 2: Migrating to Namespaces 234
Afterword 245
Appendix A: Optimizations That Aren’t (in a Multithreaded World) 247
Appendix B: Test Results for Single-Threaded Versus Multithread-Safe 263

String Implementations
Bibliography 271

Index , 273

