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Introductory Mathematics for
Scientists and Engineers

Foreword to the Series

The past few years have seen a steady increase in the courses of mathe-
matics and computing provided for students undertaking higher
educatmn This is partly due to high speed digital computation being more
‘  available and partly because so many disciplines now find mathe-
. ma, cs an essential element of their curriculum. Many of the students, €.g.

those of physics, chemistry, engineering, biology and economics, will be
concerned with mathematics and computing mainly as tools, but tools
with which they must acquire proficiency. On the other hand, courses for
mathematicians must take cognizance of the existence of electronic
computers. All these students may therefore study similar material
though possibly at different stages of their careers—some, perhaps,
will encounter it shortly after commencing their training while others
may not come to grips with it until after graduating. This series is designed
to cater for these differing requirements ; some of the books are appropri-
ate to the basic mathematical training of students in many disciplines
while others, dealing with more specialized topics, are intended both for
those for whom such topics are an essential ingredient of their course and
for those who, although not specialists, find the need for a working know-
ledge of these areas. However, the presentation of all the books has been
planned so as t& demand the minimal mathematical equipment for the
topics discussed. Instructors will therefore often be able to extract a
shorter introductory course when a fuller treatment is not desired.

The authors have, in general, avoided the strict axiomatic approach
which is favoured by some writers, but there has been no dilution of the
standard of mathematical argument. Learning to follow and construct a
logical sequence of ideas is one of the important attributes of courses in
mathematics and computing.

vii




viil Foreword to the series

While the authors’ purpose has been to stress mathematical ideas
which are central to applications and necessary for subsequent investiga-
tions, they have attempted, when appropriate, to convey some notion of
the connection between a mathematical model and the real world. They
have also taken account of the fact that most students now have access to
electronic digital computers.

The careful explanation of difficult points and the provision of large
numbers of worked examples and exercises should ensure the popularity
of the books in this series with students and teachers alike.

D. S. JoNEs
Department of Mathematics
University of Dundee



Preface

Computational methods for ordinary differential equations, although
constituting one of the older established areas of numerical analysis,
have been the subject of a great deal of research in recent years. It is
hoped that this book will, in addition to its primary purpose of serving as a
text for advanced undergraduates, provide postgraduate students and
general uses of numerical analysis with a readable account of these
developments. The only prerequisites required of the reader are a sound
course in calculus and some acquaintance with complex numbers,
matrices, and vectors.

There is no general agreement on how the phrase ‘numerical analysis’
should be interpreted. Some see ‘analysis’ as the key word, and wish to
embed the subject entirely in rigorous modern analysis. To others,
‘numerical’ is the vital word, and the algorithm the only respectable
product. In this book I have tried to take a middle course between these
two extremes. On the one hand, few theorems are stated (and even fewer
proved), while, on the other, no programmes will be found. The approach
is rather analogous to that of the classical applied mathematician,
whose genuine interest in real problems does not detract from his delight
in watching mathematics at work. Thus, most of the exercises and worked
examples are intended to cast light (and, in some cases, doubt) on our
interpretation of why numerical methods perform in the way that they do.
It is hoped that the reader will supplement such exercises by programming
and running the methods, discussed in the text, when applied to specific
differential equations or systems of equations, preferably arising from real
problems.

Much of the material of this book is based on lecture courses given to
advanced undergraduate and early postgraduate students in the Univer-
" siiies of St. Andrews, Aberdeen, and Dundee. Chapters 2, 3, and 4
develop the study of linear multistep methods and Runge-Kutta methods
in some detail, and culminate in some of the most efficient forms of these
methods currently available. These two classes form a convenient basis
for the development of concepts, such as weak stability, which are widely
applicable. Chapter 5 is concerned with hybrid methods—a class whose
computational potentialities have probably not yet been fully exploited.
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X Preface

Chapter 6 deals with the highly efficient class of extrapolation methods,
. while-chapter 7 is concerned with the somewhat neglected area of special
‘methods for problems which exhibit special features other than stiffness.
Up to this poiat, in the interests of ease of exposition, only the single
first-order differential equation is considered. The first half of chapter 8
gives an account of precisely how much of the previous work goes over
unaltered to the problem of a system of first-order equations, how much
needs modification, and how much is invalid ; the second half is devoted
to a full account of the problem of stiffness, and examines certain con-
nections with the theory of stability of finite difference methods for
partial -differential equations. The last chapter is concerned with a
special class of second-order differential equations. The emphasis through-
out is on initial value problems, since direct techniques for boundary
value problems lead to a large and separate area of numerical analysis.
An exception is made in the case of the shooting method for two-point
boundary value problems, which is described in the appendix.

Any book on this topic necessarily owes a large debt to the well known
book by P. Henrici, Discrete Variable Methods in Ordinary Differential
Equations. This book, together with the celebrated papers of G. Dahl-
_quist;-has played a unique réle in the developments of the last decade.
Henrici’s approach is somewhat more rigorous than that of the present
book, but I have purposely adopted a notation consistent with Henrici’s,
in order that the reader may the more easily make the transition to Hen-
rici’s book.

Many people have influenced the development of this book. Foremost
among these is Professor A. R. Mitchell, who, over many years in the
successive roles of teacher, supervisor, colleague—and always as friend—
has greatly influenced my attitude to numerical analysis. It was my good
fortune that, during the preparation of this book, a year-long seminar on
numerical analysis was held in the University of Dundee, with the generous
support of the Science Research Council. This book was much influenced
by useful discussions with many of the distinguished numerical analysts
who took part in that seminar. These included Professors G. Dahlquist,
C.W.Gear, W. B. Gragg, M. R. Osborne, H. J. Stetter, and, in particular,
Professor T. E. Hull, who suggested several important improvements in
the manuscript. My thanks are also due to Professors J. C. Butcher,
J.D.Lawson, Drs. A. R. Gourlay, J.J. H. Miller, and Mr.S.T.Sigurdsson
for useful discussions. I am also grateful to several past and present re-
search students in the University of Dundee, and in particular to Mr.
K. M. Lovell, for help with computational examples. Finally, I am in-
debted to Professor D. S. Jones for his useful comments on an early draft,
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Preliminaries

1.1 Notation

Throughtout this book we shall denote scalars by y, ¢, etc.,and (column)
vectors by y, ¢, etc. The components of the m-dimensional vector y
will be denoted by ‘y, i=1,2,...,m; that is, we can write y =
['y, %y, ..., y]", where T denotes the transpose. -

We shall repeatedly use the notation

f(x) = O(¢(x)) as x— X,

which means that there exists a positive constant K such that Lf(x) <
K|¢(x)| for x sufficiently close to x,. Our most frequent use of this notation
will be in the context f(h) = O(h?) as h — 0, where h is the steplength
associated with some numerical method. So frequently shall we write this,
that it will be impracticable always to include the phrase ‘as h-0,
which is consequently to be taken as read. However, it is important to
guard against the temptation mentally to debase the notation f(h) =
O(h®) to mean ‘f(h) is roughly the same size as h?, whatever the size of .
Apparent discrepancies between theoretical estimates and numerical
results frequently stem from a failure to realize that the notation f(h) =
O(h?) carries with it the implication ‘as h — 0’

The closed interval a < x < b will be denoted by [a, b], and the open
interval a < x < b by (a,b). We shall occasionally use the notation
y(x)e C™[a, b] to indicate that y(x) possesses m continuous derivatives
for x € [a, b].

1.2 Prerequisites

Remarkably little is required by way of prerequisites for the study of
computational methods for ordinary differential equations. It is assumed
that the reader is familiar with the following topics ; suggested references
are given.



2 Computational methods in ordinary differential equations

(i) Introductory analysis, including the geometry of the complex
plane. (Jones and Jordan.®?)

(i) Elementary numerical analysis, including the finite difference
operators A, V., and elementary interpolation and quadrature
formulae. (Morris.'3%)

(iii) For the -material of chapter 8, elementary properties of vector
and matrix norms. (Mitchell,'* chapter 1.)

1.3 Initial value problems for first-order ordinary differential equations

A first-order differential equation y' = f(x, y) may possess an infinite
number of solutions. For example, the function y(x) = Ce** is, for any
value of the constant C, a solution of the differential equation y’ = Ay,
where 1 is a given constant. We can pick out any particular solution by
prescribing an initial condition, y(a) = 1. For the above example, the
particular solution satisfying this initial condition is easily found to be
y(x) = ne**~9. We say that the differential equation together with an
initial condition constitutes an initial value problem,

y=f(y), ya=n (1)

The following theorem, whose proof may be found in Henrici,®” states

conditions on f(x, y) which guarantee the existence of a unique solution
of the initial value problem (1).

Theorem 1.1 Let f(x, y) be defined and continuous for all points (x, y) in
the region D defined by a < x < b, —0 <y < 0, 4a and b finite, and let
there exist a constant L such that, for every x, y, y* such that (x, y) and (x, )
are both in D,

If(x,y) — f(x,y*)| < Lly = y*I. ()]

Then, ifn is any given number, there exists a unique solution y(x) of the initial
value problem(1), where y(x) is continuous and d ijferentiable for all(x, y)in D.

The requirement (2) is known as a Lipschitz condition, and the constant
L as a Lipschitz constant. This condition may be thought of as being inter-
mediate between differentiability and continuity, in the sense that

{(x, y) continnously differentiable w.r.t. y for all (x, y) in D
= f(x,'y) satisfies a Lipschitz condition w.r.t. y for all (x, y) in D

= f(x, y) continuous w.r.t. y for all (x, y) in D.
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In particular, if f(x, y) possesses a continuous derivative with respect to y
for all (x, y) in D, then, by the mean value theorem,

s = Sy = LB -y,

where j is a point in the interior of the interval whose end-points are y and
y*, and (x, y) and (x, y*) are both in D. Clearly, (2) is then satisfied if we
choose

of (x,y)
L= eiarirl. 3
(ibl)gp ! 6y | ( )

1.4 Initial value problems for systems of first-order ordinary differential
equations

In many applications, we are faced, not with a single differential
equation, but with a system of m simultaneous first-order equations in m
dependent variables 'y, 2y,...,"y. If each of these variables satisfies a
given condition at the same value a of x, then we have an initial value
problem for a first-order system, which we may write

by = 1 (x, 'y 2y, ,m), Y@ =",
2y = 2(x, 1y, 2y,...,"), @) ="n,

(4)

o S £ 6 o - M) s | F i,

B Ihe 'y, i=1.2....m satisfy given conditions at different values
a,b,c,...of x, then we have a multipoint boundary.value problem; if there
are just two different values aand b of x. then we have a two-point boundary
value problem.) Introducing the vector notation

y=0p2....,m% =05%...."] =fxy),
n=[""n...,"0",
‘we may write the initial value problem (4) in the form
y =f(xy), y@=n )

Theorem 1.1 readily generalizes to give necessary conditions for the
existence of a unique solution to (5); all that is required is that the region D
‘now be defined by a < x <b, —0 < ly<o,i=12...,m and (2)




4 Computational methods in ordinary differential equations
be replaced by the condition
If(x,y) — f(x, y®)Il < Llly — y*I, (6)

where (x,y) and (x,y*) are in D, and | .| denotes a vector norm
(Mitchell,'** chapter 1). In the case when each of the f(x, 'y, 2y,...,™y),
i=1,2,...,m, possesses a continuous derivative with respect to each of
the /y, j = 1,2,..., m, then we may choose, analogously to (3),

of
L= sup —’, ™

x,eD ||0Y
where f/0y is the Jacobian of f with respect to y—that is, the m x m
matrix whose i—jth element is 8 (x, 'y, 2y, ...,™y)/@’y, and | . | denotes a

matrix norm subordinate to the vector norm employed in (6) (see
Mitchell,'** chapter 1).
1.5 Reduction of higher order differential equations to first-order systems

Let us consider an initial value problem involving an ordinary differen-
tial equation of order m, which can be written in the formt

Y = £, y @,y Ly, ya)=1,, t=01,....m—1. (8)
We define new variables iy, i = 1,2,...,m, as follows:
y (=9
y' (=y"),
=y,

ly
zy'
3y

: "y ="y (=Y h)
Then, on writing ‘n for n;_,, i = 1,2,..., m, the initial value problem (8)
may be written as an initial value problem for a first-order system, namely

ly =2y, 'y(@) = 'n,
iy =3y, 2y(a) = *n,
My -ty " ly@) ="""n,
A= P06 9P yiis , Y% ™y(a) = ™,

+ Superscripts in round brackets indicate the orde; of higher derivatives; that is, Yx) =

yx), YV(x) = y(x), y2Ux) = y'(x), etc.
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or,
y =f(x,y), y@)=n,
where
F S T R Nt

With certain exceptions to be discussed in chapter 9, our normal proce-
dure for dealing with an initial value problem of the form (8) will be
to reduce it to an initial value problem for an equivalent first-order
system. Note that the differential equation appearing in (8) is not the most
general differential equation of order m; implicit differential equations
of the form

Flx ¥ 0 . ") =0

are also possible. Using the technique described above, an initial value
problem involving such an equation may be written in the form

F(x,y,y) =0, y(@=n

There exist very few numerical methods which tackle this form of initial
value problem directly, and we shall always assume that we are given an
initial value problem in one of the forms (1), (5), or (8).

1.6 First-order linear systems with constant coefficients

The first-order system y’ = f(x,y), where y and f are m-dimensional
vectors, is said to be linear if f(x,y) = A(x)y + ¢(x), where A(x) is an
m x m matrix and ¢(x) an m-dimensional vector ; if, in addition, A(x) = A,
a constant matrix, the system is said to be linear with constant coefficients.
In chapter 8, we shall require the general solution of such a system,

y = Ay + ¢(x). )

Let §(x) be the general solution of the corresponding homogeneous
system

y = Ay. (10)

If Y(x) is any particular solution of (9), then y(x) = $(x) + Y(x) is the
general solution of (9). A set of solutions y/(x), t = 1,2,..., M, of (10) is
said to be linearly independent if Y™  a,y(x) = 0 implies a, =0, t = 1,
2,..., M. A set of m linearly independent solutions §,(x), t = 1,2,...,m,
of (10) is said to form a fundamental system of (10), and the most general
solution of (10) may be written-as a linear combination of the members
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of the fundamental system. It is easily seen that §(x) = e**c,, where ¢,
is an m-dimensional vector, is a solution of (10) if ¢, = Ac,, that is, if 4,
is an eigenvalue of 4 and ¢, is the corresponding eigenvector. It will be
sufficient for our purposes to consider only the case where 4 possesses
m distinct, possibly complex, eigenvalues 4,, t = 1,2,...,m. The corre-
sponding eigenvectors ¢,, t = 1,2,...,m, are then linearly independent
(Mitchell,'** chapter 1), and it follows that the solutions §,(x) = ¢*~c,,
t =1,2,...,m, form a fundamental system of (10), whose most general
solution is thus of the form Z;'f__l ke**c,, where the k,t = 1,2,...,m
are arbitrary constants. The most general solution of (9) is then

) = 3 kere, + W), (11)
t=1

We can now find the solution of the initial value problem

y = Ay + &(x), y@)=n (12)

under the assumptions that A has m distinct eigenvalues, and that we know
a particular solution J(x) of (9). By (11), the general solution of (9) satisfies
the initial condition given in (12) if

n—v@=3 ke, (13)
=1

t

Since the vectors ¢,, t = 1,2,...,m, form a basis of the m-dimensional
vector space (Mitchell,'** chapter 1), we may express  — Y(a) uniquely
in the form

, B ol Tl g (14)

On comparing (13) with (14), we see that (11) is a solution of (12) if we
choose k, = x,e~** The solution of (12) is thus

) = 3 ke, + o)
t=1

For a fuller treatment of first-order linear systems with constant co-
efficients, the reader is referred to Hurewicz.”® :

Example 1 ~ Solve the initial value problemy’ = Ay,y(0) = 1,0, — 117, where

e [ )
TR TR TR T
40 —40 —40



