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2 1. THE AIRCRAFT DESIGN PROCESS

1.1 INTRODUCTION

What is a design? It is probably appropriate to begin a
book on design by discussing the term itself, especially
considering the concept is often erroneously defined
and sometimes even characterized through zeal rather
than a true understanding of its meaning. The author re-
calls a past interview with a renowned designer who,
during a TV interview, was asked to define the term.
The show that ensued was a disappointing mixture of
superficial self-importance and an embarrassing unpre-
paredness for the question. Following an artful tip-
toeing around the issue the concluding response could
be summarized as; “well, everything is designed.” No,
nothing could be further from the truth: not everything
is designed. Some things are designed while other
things are not. When self-proclaimed designers have a
hard time defining the term properly it should not be
surprising when laypeople misuse the word and apply
it to things that are clearly not designed. The least we
can expect of any designer is to accurately define the
concept to laypeople, some of whom have openly
demonstrated an inability to distinguish a regular pattern
from a design.

Any attempt at defining the word properly requires
an insight into how the brain perceives the geometry
that surrounds us. It is a question of great intrigue.
How can the brain tell apart a clamshell and a cloud,
or a raccoon and a road? This is achieved using the
brain’s innate ability called rapid pattern recognition,
common to all animals. It is one of the most important
biological traits in any species that relies on optics as a
primary sensory organ. In fact, this ability, a conse-
quence of a biological evolution lasting over hundreds
of millions of years, is imperative to the survival of the
species. Its most important strength is that it allows
animals to make a distinction between the facial features
of a mother and the silhouette of a dangerous predator
(for instance, see [1]).

If you see a face when you look at the front end of a
typical car, or the silhouette of people or animals when
looking at rock formations or clouds, you should know
that this is your brain’s pattern recognition subroutine
working overtime. It is desperately trying to construct
a recognizable image from any pattern that hits the
retina to help you quickly identify friends from foes.
The faster a member of a species can accomplish this
feat, the greater is the chance it may escape a dangerous
predator or identify a concealed prey, providing a clear
evolutionary advantage. It helps a falcon see a rodent
from great heights as much as it helps an antelope iden-
tify a lurking lion. However, just as rapid pattern recog-
nition is capable of discerning predator and prey; it can
also play tricks with the brain and cause it to assemble
random patterns into images of easily recognizable

things that are simply not there. This condition is called
apophenia. The lack of public education on this elemen-
tary biological function is stunning and renders some
laypeople altogether incapable of realizing that the inter-
play of dark and light areas on their toast or potato chip
that looks like their favorite celebrity is not a design but
only a random pattern the brain has managed to
assemble into a recognizable shape. Deprived of knowl-
edge to know any better, many yield to wishful thinking
and allow the imagination to run wild.

In short, a reqular pattern is a combination of geomet-
rical, physical, or mathematical features that may or
may not be random, but “appears” either repetitious
or regular through some characterization, such as
learning. In fact, our environment is jam-packed with
regular patterns. The repetition (or regularity) of a
pattern allows the brain to separate it from the truly
random background. People, familiar with the term
“design,” erroneously deduce that since a pattern ap-
pears to be regular it must be designed, when in fact
it is not. A design is a pattern of geometrical, physical,
or mathematical features that is the consequence of an
intent and purpose. A design requires an originator
who intended for the pattern to look a certain way so
it could serve its proposed purpose. This way, a design
is a subset of reqular patterns and one that has a preconceived
goal, requires planned actions to prepare, and serves a specific
purpose.

Consider the natural shapes in Figure 1-1. The moun-
tain range to the left was not designed but formed by the
mindless forces of nature. There was no preconceived
plan that the range should look this way and not some
other way. It just formed this way over a long time — it
is a random but repetitious pattern. The contrails that
criss-cross the sky over the Yosemite National Park, in
the right image, were not planned either. They are a
consequence of random departure times of different air-
planes in different parts of the USA, headed in different
directions at different altitudes. While the arrangement
of the airway system is truly designed it was not
conceived with the contrails in mind but for a different
purpose altogether. No one planned the airway system
so this pattern would form over El Capitan in this
fashion and not some other. No one was ever tasked
with figuring out that this particular day the winds aloft
would allow the pattern to stay so regular. Its appear-
ance is nothing but a coincidence. The geometry of the
contrails, just like the mountain range in the left image,
is the consequence of random events that were not
designed. Claiming these are designs, automatically
inflicts a burden-of-proof obligation on the petitioner:
Show the plans, the originator, and explain the purpose
and, if unable to, simply call it by its proper name until
such plans surface: a pattern is a pattern until it can be
shown to be a design.
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FIGURE 1-1 Examples of random patterns. The mountain range to the left is shaped by the random forces of nature. The pattern of contrails
over the Yosemite National Park is the consequence of random departure times of the aircraft involved that are influenced by random decisions
of air traffic controllers. There is absolutely no intentional intelligence that forms these shapes. They just appear that way. (Photos by Snaevarr

Gudmundsson)

With the philosophy of design behind us, we can now
focus on the primary topic of this book — the design of
aircraft, in particular General Aviation aircraft. Accord-
ing to the Federal Aviation Administration, the term
General Aviation aircraft (from here on called GA aircraft)
refers to all aircraft other than airlines and military opera-
tions [2]. This includes a large body of aircraft, ranging
from sailplanes and airships to turbofan jets. Most
aircraft are designed to comply with strict regulatory
standards. In the USA these are managed and main-
tained by the Federal Aviation Administration (FAA).
In Europe the standards are set by the European Avia-
tion Safety Agency (EASA). These standards are similar
in most ways, which results from an effort between the
two agencies to harmonize them. Table 1-1 lists a num-
ber of standards for selected classes of aircraft.

In the USA, a light sport aircraft (LSA) is treated
differently from an aircraft certified to 14 CFR Part 23
or 25. Instead of a direct involvement in the
certification process, the FAA accepts compliance based
on so-called consensus standards. These standards are
neither established nor maintained by the agency itself
but by some other organization. Some of these are really
“watered down” FAA rules that are far less burdensome
to comply with than the originals. This can partially be
justified on the basis that the airplanes they apply to
are much simpler than regular aircraft.

The acceptance of consensus standards (LSA) is effec-
tively based on the “honor system.” In other words, a
manufacturer tells the FAA its product complies with
the applicable standards and, in return, receives an
airworthiness certificate. This is done as long as no
“issues” surface. The system is a form of “self-regulation”
and is designed to keep the FAA out of the loop. The
LSA industry recognizes that responsible compliance
is the only way to avoid more burdensome regulations.
According to FAA officials in 2012, this system has been
more or less problem free, excluding one instance [3].

Currently, the American Society for Testing and Mate-
rials (ASTM) is the primary organization that establishes
and maintains consensus standards for LSA. ASTM has
developed a number of standards that apply to different
types of aircraft. The FAA accepts some of these in lieu of
14 CFR. Which standard ultimately depends on the
subclass of aircraft (aircraft, glider, gyrocopter, lighter-
than-air, powered parachutes, and weight-shift control)

TABLE 1-1 Certification Basis for Several Classes of Aircraft

Class Regulations Comments

General 14 CFR Part 23 (USA)

Aviation CS-23 (Europe)

Commercial 14 CFR Part 25 (USA)

Aviation CS-25 (Europe)

Sailplanes 14 CFR 21.17(b) (USA) 14 CFR 21.17(b) allows

CS-22 (Europe) the FAA to tailor the

certification on a need-to
basis to sailplanes.
Then, by referring to
AC 21.17-2A, the FAA
accepts the former JAR-22
as a certification basis,
which have now been
superceded by CS-22.

Airships 14 CFR 21.17(b) (USA) 14 CFR 21.17(b) allows the

CS-30 and CS-31HA FAA to tailor the

certification on a need-to
basis to airships.

Non- 14 CFR 21.17(b) (USA) 14 CFR 21.17(b) allows the

conventional ~ CS-22 (Europe) FAA to tailor the

Aircraft certification on a need-to
basis to non-conventional
aircraft.

Light Sport Consensus (USA) See discussion below

Aircraft CS-LSA (Europe) regarding LSA acceptance

(LSA) in the USA.
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and on a number of specific fields (design and perfor-
mance; required equipment; quality assurance; and
many others). For instance, for the subclass aircraft,
design and performance is accepted if it complies with
ASTM F2245, required equipment must also comply
with ASTM F2245, but quality assurance must comply
with ASTM F2279, maintenance and inspection with
ASTM F2483, and so on. Gliders, gyroplanes, and other
light aircraft must comply with different ASTM stan-
dards. The matrix of requirements can be obtained
from the FAA website [4].

While this book will mostly focus on the design of
new GA aircraft, other classes of aircraft will be dis-
cussed when needed. The designer of GA aircraft should
be well rounded in other types of aircraft as well, a point
that will be made repeatedly throughout this book.

GA aircraft certified under 14 CFR Part 23 are subject
to a number of limitations as stipulated under 14 CFR
Part 23.3-Airplane categories. The regulations place
aircraft to be certified into four categories; normal, utility,
aerobatic, and commuter. These categories must abide by
the restrictions listed in Table 1-2. With the exception
of the commuter category, an aircraft may be certified
in more than one category provided all requirements
of each are met.

New aircraft are designed for a variety of reasons, but
most are designed to fulfill a specific role or a mission as
dictated by prospective customers. For economic rea-
sons, some aircraft (primarily military aircraft) are
designed to satisfy more than one mission; these are
multi-role aircraft. Others, for instance homebuilt
aircraft, are designed for much less demanding reasons

and are often solely based on what appeals to the
designer.

No matter the type of aircraft or the reason for its
design, specific tasks must be completed before it can
be built and flown. The order of these tasks is called
the design process. This process is necessitated by the
fact that it costs a lot of money to develop a new aircraft.
Organizations that develop new aircraft do not invest
large amounts of funds in a design project until
convinced it can perform what it is intended to. A design
process makes this possible by systematically evaluating
critical aspects of the design. This is primarily done us-
ing mathematical procedures, as well as specific testing
of structural configuration, materials, avionics, control
system layout, and many more.

The order of the tasks that constitute the design pro-
cess may vary depending on the company involved.
Usually there is an overlap of tasks. For instance, it is
possible that the design of the fuselage structure is
already in progress before the sizing of the wing or
stabilizing surfaces is fully completed. Generally, the
actual process will depend on the size and maturity of
the company in which it takes place and the order of
tasks often varies. However, there are certain steps that
must be completed in all of them; for instance, the esti-
mation of weight; sizing of lifting surfaces and the fuse-
lage; estimation of performance; and other essential
tasks.

In mature companies, the design process is managed
by individuals who understand the big picture. They
understand the scope of the project and are aware of
the many pitfalls in scheduling, hiring, design, and other

TABLE 1-2 Restrictions for Aircraft Classes Certified under 14 CFR Part 23

Restriction Commuter Normal Utility Aerobatic
Number of pilots lor2 1 1 1
Max number of 19 9 9 9
occupants
Max T-O weight 19,000 Ibg 12,500 by 12,500 1bg 12,500 Ibg¢
Aerobatics allowed? No No Limited Yes
Non-aerobatic Normal flying Normal flying Normal flying N/A
operations permitted Stalls (no whip stalls) Stalls (no whip stalls) Stalls (no whip stalls)
Steep turns (¢ < 60°) Lazy eights Lazy eights
Chandelles Chandelles
Steep turns (¢ < 60°) Steep turns (¢ < 90°)
Spins (if approved)
24,000
Max maneuvering 21 4+————<n; <38 44 6.0
. W + 10,000

g-loading, 1.,
Min maneuvering —04ny <n_ <-1.52 -1.76 -3.0

g-loading, n_

W = maximum T-O weight. Maneuvering loads are based on 14 CFR 23.337.
A whip stall may occur when the airplane is stalled while in a slip. This can cause the outer wing to stall first and drop abruptly [5].



1.1 INTRODUCTION 5

tasks, that many engineers consider less than glam-
orous. These people must be well-rounded in a number
of disciplines: aerodynamics; performance analysis;
stability and control; handling; power plants; weight
analysis; structural layout; environmental restrictions;
aviation regulations; history of aviation; and aircraft
recognition, to name a few. Although not required to
be an expert in any of these fields, their understanding
must be deep enough to penetrate the surface. Knowing
what to do, how to do it, and when to do it, is the key to
a successful aircraft development program.

1.1.1 The Content of this Chapter

* Section 1.2 presents a general description of the
aircraft design process.

* Section 1.3 presents two specific algorithms intended
to guide the aircraft designer through the conceptual
design process. If you are unsure of “what to do
next,” refer to these. They are based on actual
industry experience and are not academic
“cookbook” approaches.

* Section 1.4 presents project management tools. Many
beginning project leaders are often at a loss as to how
to manage a project. If this is your predicament you
need to study these tools. Project management
revolves around knowing what to do and when to do
it. Thus, the manager must construct a chronological
order of the tasks that need to be completed.

¢ Section 1.5 presents helpful approaches to describing
engineering ideas using graphics ranging from three-
view drawings to composite photo images. These are
extremely helpful when trying to “sell” an idea.

1.1.2 Important Elements of a New Aircraft
Design

Before going further, some specific topics must be
brought up that the lead airplane designer must intro-
duce and discuss thoroughly with the design team.
Among those are:

Definition of the Mission

It is imperative that the mission of the new aircraft is
very clearly defined. Is it primarily intended to serve as
a cruiser? If so, what airspeed and cruising altitude is it
most likely to see during its operation? Is it a cargo trans-
port aircraft? How much weight must it carry? How fast,
far, and high shall it fly? Is it a fighter? What energy state
or loitering capabilities are required? The mission must
be clearly defined because the airplane will be sized to
meet that particular mission. An aircraft designed in
this fashion will be most efficient when performing
that mission. Clarity of this nature also has an

unexpected redeeming power for the designer: It is
very common during the development of aircraft that
modifications to capabilities are suggested by outside
agencies. In spite of being well meant, some such sug-
gestions are often detrimental to the mission. A clearly
defined mission allows the designer to turn down a
disadvantageous suggestion on the basis that it compro-
mises the primary mission.

Performance Requirements and Sensitivity

Performance requirements must be clearly defined
and are usually a part of the mission definition. It is
imperative to quantify characteristics such as the take-
off distance, time to cruise altitude, cruise range, and
even environmental noise for some types of aircraft.
But it is also important to understand how deviations
from the design conditions affect the performance.
This is referred to as performance sensitivity. How does
high altitude and a hot day affect the take-off distance?
How about the upward slope of the runway? How does
having to cruise, say, some 5000 ft below the design alti-
tude affect the range? How about if the airplane is
designed for a cruising speed higher than would be
permitted by air traffic considerations and, therefore,
is consistently operated at a lower cruising speed?
How will that affect the range? Clearly, there are
many angles to designing an aircraft, but rather than
regarding it as a nuisance the designer should turn it
into strength by making people in management and
marketing aware of the deficiencies. And who knows —
perhaps the new aircraft is less sensitive than the
competition and this could be turned into a marketing
advantage.

Handling Requirements (Stability and Control)

How important is the handling of the aircraft? Is this a
small aircraft that is operated manually, rendering stick
forces and responsiveness imperative? Is it a heavy
aircraft with hydraulic or electric actuators, so stick
forces are fed back to the pilot electronically and, thus,
can be adjusted to be whatever is considered good?
How about unsuspected responses to, say, thrust forces?

The Lockheed SA-3 Viking, an anti-submarine war-
fare aircraft, features a high wing with two powerful
turbofan engines mounted on pylons. When spooling
up, the aircraft experiences a powerful nose pitch-up
tendency that is captured by a stability augmentation
system (SAS) that was not originally designed into the
prototype. The Boeing B-52 Stratofortress uses spoilers
for banking. When banking hard, the spoiler on the
down-moving wing is deployed and this reduces lift
on the outboard part of that wing. This, in turn, means
the center of lift moves forward, causing a nose pitch-
up tendency, which the pilot must react to by pushing
the yoke forward (for nose pitch-down). Handling
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issues of this nature must be anticipated and their
severity resolved.

Ease of Manufacturing

Is it imperative that the aircraft will be easy to manu-
facture? Ease of manufacture will have a profound
impact on the engineering of the product and its cost
to the customer. A straight constant-chord wing can
be manufactured at a lower cost than one that has
tapered planform and compound surfaces, but it will
be less efficient aerodynamically. Which is more impor-
tant? The designer must have means to demonstrate
why a particular geometry or raw material is required
for the project. The concept of ease of marketing always
looks good on paper, but this does not guarantee its
success. For instance, it is simple to select composites
for a new aircraft design on the grounds that this
will make it easier to manufacture compound surfaces.
But are they really needed? For some aircraft, the
answer is a resounding yes, but for others the answer
is simply no.

As an example, consider the de Havilland of Canada
DHC-2 Beaver (see Figure 1-2). Designing this otherwise
sturdy airplane from composites would be an unwise
economic proposition. In the current environment it
would simply be more expensive to build using compos-
ites and sell at the same or lower price than the
aluminum version. To begin with, it is not easy to justify
the manufacturing of an aerodynamically inefficient
frustum-style fuselage' and constant-chord wing
featuring a non-laminar flow airfoil with composites.
Composites are primarily justifiable when compound
surfaces or laminar flow wings must be manufactured.
They require expensive molds to be built and main-
tained, and, if the aircraft ends up being produced in
large numbers, the molds have to be manufactured as
well; each may only last for perhaps 30—50 units.

The interested reader is encouraged to jump to Sec-
tion 2.2, Estimating project development costs, for further
information about manufacturing costs (in particular
see Example 2-3, which compares development and
manufacturing costs for a composite and aluminum
aircraft). Cost analysis methods, such as the widely
used DAPCA-IV, predict man-hours for the engineering
development of composite aircraft to be around two
times greater than that of comparable aluminum
aircraft. They also predict tooling hours to double and
manufacturing hours to be 25% greater than for
aluminum aircraft. Labor and material are required
not only to manufacture the airplane, but also to

FIGURE 1-2 The de Havilland of Canada DHC-2 Beaver. (Photo
from Wikipedia Commons)

manufacture and maintain expensive tooling. As a
result, composite aircraft are more expensive to manu-
facture in spite of substantial reduction in part count.

This inflicts an important and serious constraint on
the scope of production. Composites require heating
rooms to ensure the resin cures properly so it can pro-
vide maximum strength. Additionally, vacuum bagging
or autoclaves are often required” to force tiny air bubbles
out of the resin during cure to guarantee that the certi-
fied strength is achieved. The manufacturer must
demonstrate to the authorities that material strength is
maintained by a constant production of coupons for
strength testing. Special provisions must be made to
keep down moisture and prevent dust from entering
the production area, not to mention supply protective
clothing and respirators to all technicians who work
with the material. All of this adds more cost and con-
straints to the production and all of it could have been
avoided if the designer had realized that requiring com-
posites was more a marketing ploy than a necessity. This
is not to say that composites do not have their place —
they certainly do — but just because composites are right
for one application, does not mean they are appropriate
for another one.

Certifiability

Will the aircraft be certified? If the answer is yes, then
the designer must explore all the stipulations this is
likely to inflict. If no, the designer bears a moral obliga-
tion to ensure the airplane is as safe to operate as
possible. Since non-certified airplanes are destined to
be small, this can be accomplished by designing it to pre-
vailing certification standards, for instance, something
like 14 CFR Part 23 or ASTM F2245 (LSA aircraft).

Regulations often get a bad rap through dema-
goguery by politicians and ideologues, most of whom

A frustum-style fuselage is a tapered structure that does not feature compound surfaces. It is discussed in Chapter 12, The Anatomy of

the Fuselage.

“Note that some manufacturers of composite structures claim that curing composites using vacuum “bagging” is equally effective as
using an autoclave — it is certainly more economical. For instance see: http:/ /www.gmtcomposites.com/why/autoclave.



