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Navier-Stokes Equations
and Related Nonlinear Problems



FOREWORD

This volume contains the proceedings of the Sixth International Conference on
Navier—Stokes Equations and Related Nonlinear Problems (NSEC6), held in
Palanga, Lithuania, on May 22-29, 1997. This meeting continued the series
of conferences which, since 1992, were held regularly in different countries.

The Palanga meeting brought together 66 researchers from all over the world
and provided a forum for presenting the newest results, for discussing mathemat-
ical questions of common interest, as well as open problems. While the emphasis
was on the mathematical foundation of fluid dynamics, the conference attracted
related contributions from Nonlinear and Numerical Analysis as well.

This volume is a collection its 25 articles selected from invited lectures and
contributed papers. The main topics covered include: Incompressible Fluids De-
scribed by the Navier—Stokes Equations; Compressible Fluid; Non-Newtonian
Fluids; Free Boundary Problems; Equations from Thermo- and Magnetohydro-
dynamics; Asymptotic Analysis; Stability; Related Problems of Nonlinear and
Numerical Analysis. The papers are either original results or updated surveys of
recent developments, giving directions for future research.

The conference would not have been possible without the financial support
from the Open Society Fund-Lithuania, Lithuanian Sciencies and Studies Foun-
dation, Scientific Publishing House TEV, and the Institute of Mathematics and In-
formatics of Lithuania. We are greatly indebted to all the sponsors. We wish also
to express our deepest gratitude to the local organizers: Professors M. Sapagovas,
V. StatuleviCius, R. éiegis and S. Rutkauskas. We are also indebted to Professor
V. Buda for his invaluable technical support during the conference, and we thank
the TEV editors for preparation of contributions for publishing.

Last but not least, we thank all participants for making the conference a suc-
cess. We hope that the friendly and stimulating atmosphere of this meeting will
remain in the memory of all participants.

H. AMANN, G. P. GALDI, K. PILECKAS, V. A. SOLONNIKOV
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A PROBLEM OF EXPONENTIAL DECAY FOR
NAVIER-STOKES EQUATIONS ARISING IN THE
ANALYSIS OF RUGOSITY

YOUCEF AMIRAT, DIDIER BRESCH, JEROME LEMOINE and
JACQUES SIMON*

Laboratoire de Mathématiques Appliquées, C.N.R.S. (UMR 6620), Université
Blaise Pascal (Clermont-Ferrand 2), 63177 Aubiere cedex, France

ABSTRACT

We are interested with the approximation of the flow past a plate covered by periodic
asperities. The obtention of a good approximation reduces to two problems. The first
problem, solved here, is a property of exponential decay of solutions of Navier—Stokes
equations with additional Poiseuille terms in a semi-infinite channel which are periodic
in the transverse directions. The second problem remains open.

1. INTRODUCTION

1.1. Flow past a plate covered with periodic asperities

We consider a viscous fluid occupying an infinite horizontal domain bounded
by two plates, a plane one P and a rugose one R., covered with periodically
distributed asperities of size €, which is moving in a parallel direction to the
first one with a constant velocity. In coordinates linked with the second one, the
domain is

O, ={z e R?: 2’ € R?,n.(z') < z3 < 63},
where ' = (z1,23), 3 >0, € > 0 and

/

ne(z’) =€n(%), (1)

7 being periodic with respect to z; and x, with periods #; and ¢;. The velocity
ue = (Uer,Ue2,Ue3) and the pressure p. satisfy the stationary Navier—Stokes

* Corresponding author.



2 Y. Amirat at al.
equations

—vAu, + (ue - V)ue + Vp: =0, Vit =0
2)

u’E'Re :07 u5|7’=ga

where v > 0 and g = (¢’,0) are constant, and they are assumed to be periodic
with respect to ; and z, with periods €/; and ££,. We assume 1/« to be integer,
which implies that 7., u. and p. are also periodic with periods ¢; and #,.

We are looking for a non oscillating (that is independent of z’ /) approxima-
tion of the velocity of the kind

T

ue () Zj de +9—d. + o(exp'”’/‘), 3)

outside a neighbourhood of R..

1.2. Exponential decay in a channel

Denoting S = (0,£;) x (0, ¢,), a semi-infinite channel is defined by
©={reR*:2' €8, z3 >0}

which is bounded on below by the part of plane
T={zeR:2' €8S, z; =0}.

For Stokes equations, an approximation of type (3) of u. was deduced in
(Amirat and Simon, 1996) from the following decay property: Any solution
(@,1I) of Stokes equations in R} which is periodic with respect to z; and x,
and such that

/q>3 dz’ =0, /|V<I>|2dz < o0 4)
5 )
satisfies
[V®(z)| < cell®ll(z2(zy) exp(—cexs), Va3 > 1. ©)

The method to get these properties is recalled in Section 2.
For Navier-Stokes equations, as we will see in Section 3, the same method
yields an auxiliary equation in the channel which is now

d /._d |
—VA¢+¢-V¢+¢3—+(x3—+g—d)-V¢+V7r=0, V-¢=0,
A A

where d € R3, d3s = 0 and &3 = z3 if 23 < &3, ©3 = 0 if 3 > 2¢3. The
first problem, which is solved in Section 4, is to get the estimate (5) under the
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hypothesis (4). A second problem, which remains open but which was solved in
(Amirat and Simon, 1996) for Stokes equations, is to find d such that the limit
of ¢ as x3 goes to oo cancels.

Inequalities such as (5), which are called de Saint-Venant estimates, have been
obtained for various problems. For Laplace equation, such an inequality was
proved in the case of Dirichlet boundary conditions on the lateral boundary by
J.-L. Lions (Lions, 1992, Theorem 10.1, p. 54) by using a lemma of L. Tartar; for
periodic lateral boundary condition, see (Amirat and Simon, 1997, Lemma 4).
For elasticity equations, the reader is referred for instance to (Oleinik et al.,
1992).

For Stokes equations, the case of Dirichlet lateral boundary condition is treated
in (Galdi, 1994, Theorem 2.2, p. 319) (see also (Mikeli¢, 1995, Proposition 1,
p. 1292) for a related problem); for the Neumann condition see (Lions, 1981);
for periodic solutions see (Amirat and Simon, 1996, Lemma 4), which is slighly
improved here. For Navier—Stokes equations with a Dirichlet lateral bound-
ary condition see K. A. Ames and L. E. Payne (1989), G. P. Galdi (1994),
C. O. Horgan and L. T. Wheeler (1978), O. A. Ladyzhenskaya and V. A. Solon-
nikov (1983); in the case of periodic solutions the reader is referred to (Amirat
et al., 1997).

2. THE CASE OF STOKES EQUATIONS

The domain O, is generated by periodic horizontal translations of the bounded
domain

Qe={zeR:2' €8, n(r) < z3 < l3}

which is bounded by the plates parts
R5={.’L'Z.’L‘I€S, 1‘3:715(1‘/)}7 P:{IZIIES, I3=£3}

and by the (fictitious) lateral boundary L. = {z : 2’ € 35, n.(2') < z3 < l3}.
Let the space of periodic functions be defined by

Hg (%) = {f € Hie(Oc) : f € H™(Qe),
f(z1 + 1,22, 23) = f(z1,22 + 2, 23) = f(Z1,22,23)}

provided with the norm of H™(€2.). The profile of the asperities is assumed to
be given by (1), with

7 € Lippe(S), ellnllLo=(sy < €3/2, 1]/e is integer,

thus [n(z') —n(y’)| < clz’ —y'| and n(z1 + 41, 22) = n(z1, 22 + €2) = N(T1, X2).

AN e T ANy YT 27— ZENT 1S P TR WW WY (o e SR AN = L A A6 (AWALL



4 Y. Amirat at al.

Let here (u,p.) be the unique solution of

Ue € (H;ler(ﬂs))?” Pe € Lger(QE)7 /pe dz =0,

Qe
—vAue + Vpe =0, Vot =10 Uglre: =10, Hole =)

Its approximation will involve a function (®,II) in the “rugose half-space” O,
which is bounded on below by the rugose plate R = R; with asperities of size
€ =1, that is

O, ={zeR: 2 €R? z3 > n(z')}.
This domain is generated by periodic horizontal translations of the following
semi-infinite channel with rugose bottom

QU ={zecR:2' €8, z3>n(z)}.
A unique pair (¥, Z) is defined in Oy, cf. (Amirat and Simon, 1996), by

Ve (H;er, loc(ﬁl))3v V¥ e (Lz(ﬁl))97 Ee Lger,loc(ﬁl)’

VAU +VE=0, V-¥=0, U|g =ng, /Eda:zO. (©)
(2!
We will use its mean value on the cross section X; where 7 = max{n(z’) : 2’ €

S}, that is

b W (', 7)dz’. 7

T hb
S

Remark. The condition fﬁn Zdz = 0 may be satisfied, although ©; is not
bounded, since the other properties in (6) imply |2(z) — Eo| < ¢’ exp(—cz3).

Let us check that b3 = 0. The incompressibility gives

O:/V-\Ilz / v .nds,
(9] PURUL,
where n is the unit outward vector field on the boundary of £2;. By the periodicity,
the integral over the lateral boundary L; vanishes. On R;, ¥ = ng by the

boundary condition and nds = (81, 8m, —1)da’, thus ¥ - nds = $V - (gn?)
and its integral cancels. Finally, the integral over P gives

/\1’3(1‘,,£3) dl" =0 (8)

S
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In this calculus, 3 may be replaced by 7}, which gives b3 = 0.

Since g = (¢/,0), b = (b',0) and the map g’ — b’ is linear continuous from
R? into itself, there exists a linear continuous map B from R3 into itself such
that, denoting {e;, 2, e3} the basis of R3,

Bg=1b; Be; =0.
Remark. The matrix of B is made up of the column vectors b', b2 and 0,
where b! and b* are defined by (6) and (7), with respectively g = e; and g = e>.

Remark. The function ¥ is independent of v (only = depends on v: indeed,
the equation in (6) may be written as —AV + V(E/v) = 0). In (7), the choice
of 7 is arbitrary since [¢ W3(z’,z3)dz’ does not depend on z3 > 7.

Now, we are able to give an approximation of the velocity and of the pressure
up to an error exponentially decreasing with €.

PROPOSITION 1. Let d. = (I — £ B)~'g. For all e(7j+ 1) < 23 < {3 and for
all o > 0,

1
ue(@) = 3. de + 9 — de + we(2), ©)
o o CeZ3
|07we (@)] +10%pe(2)] < elgl caenexp(—L2). (10)
We denote ¢y, cg,p, . . . real numbers which are independent of the other data,

but which may change from an inequality to the other one.
Remark. Let us notice that d. = g + #(I - £ B)'By.

We will recall now the main lines of the proof, which is given in (Amirat and
Simon, 1996), in order to see how we could expect to extend it to Navier—Stokes
equations.

Outlines of the proof of Proposition 1. Construction of the corrector and of
the residue. We define a corrector (1., &) in the “rugose half-space” O, by

v = £ (Bi-va (D)) e@--z2 (), av

where (¥4, ,Zq4,) denotes the solution of (6) for g = d.. It satisfies
_VAwe+v€s:O V- e =0,

¢5]R€ Bd E dEa /¢E(CL‘,,E77) dxl = (1
3
S
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Then, w,. being given by (9), we define a residue (x.,0:) in O, by w, =
Ve + Xe» Pe = & + 0c. It satisfies

—VAxe+Voe =0, V.xe=0, Xe|lp=—%elp, Xelr. =0 (12)
since we|p = 0 and we|r, =de — g — %ds (thus xc|r, = de — #Bde — g).
Exponential decay. To get a function defined in the half-space R3 , we consider
®(z) = Bd: — V4, (2,23 + 1), I(z) = —Eq4,(z', 3 + 7).
By definition (6) of (¥, Z) and by definition of B, it satisfies

—vA®+VII=0, V-&=0, /<I>(z',0)dx’=0.
S

By Lemma 4 of (Amirat and Simon, 1996), this implies, for all z3 > 1,
|0%®@(z)| + [0°TI(z)| < ca,el|Poll(z2(s)) expP(—ce 23),

where ®y(z') = ®(z',0). Since ||¢0||(L2(5))3 < Gy
T3 = 6(77 T 1),

de|, (11) gives, for all

Cex
0% (@)] + 10%6:(2)] < caemelde|exp(==52).

Then, |¢¢|p| < Ca,e,n€lde| exp(—ce/€) and (12) gives, in the whole set O,

C
10°Xe ()] +10°0(@)| < caeneldel exp( ).

This, together with the previous inequality, proves (10). a

3. THE PROBLEMS FOR NAVIER-STOKES EQUATIONS

3.1. Approximation of the velocity
Let now wu. satisfy the Navier—Stokes equations and let us again look for an
expansion of the type (9), for a convenient d., that is
T3
ue(z) = A . we(z),

where d.3 = 0. Using this in the equation (2), we get

d
—vAwW, + we + Ve + We3— + (ﬂde g ds) « Vwe + Vp:. =0,
l3 U3 E

V-w:. =0, w5|7>=0, 'w5|7zs =—Zd5—g+d€.

(13)
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The problem is to find d., depending on g and v, such that the solution (w., p.)
of (13) satisfies the decay property (10).

Instead of using a corrector (¥, =) in the rugose half-space O, with asperities
of size 1 as for Stokes equations, here we consider directly a corrector (v, &)
in the rugose half-space O, with asperities of size €. It is defined by

Ye € ( per loc( ))3’ th € (Lz(Q ))9a & € Lper loc(QE)v
_VAwe + e - Vohe + ",[)53 (Zde g 5 ds) « Vi) + VE =0, (14)

Vee=0, g, = —Z}de eNd.,

where T3 = x3 if 3 < 03, T3 = 203 — 23 if f3 < 23 < 243 and 73 = 0 else. The
existence of such a corrector is obtained, provided that £2d. is small enough (i.e.
S cy,e), by passing to the limit as m — oo on the solution defined in the
horizontal strip (55 N {z : z3 < m} which cancels for z3 = m

Then, a residue (x.,0.) is defined in O, by

We = Ye + Xe,» De = & + 0.

It satisfies

d
—VAXe + Xe * VXe + Ve * Ve + Xe * Ve + XE:;é
+ (?de +g_d€) +Vxe + Vo, =0,
3
V-xe=0, Xsk‘P = —Ye|p, XEIR; = 0.

Should 1. (z) decay exponentially fast with respect to x3/e, then |1 |p| <
¢’ exp(—c/e) which would imply |x.| < ¢” exp(—c¢/e) in the whole domain O..
Therefore, the remainder (w,, p.) would decay exponentially fast in the sense of
(10), which is our final goal.

To get this exponential decay of ¥.(x), the first problem is to prove that

T3
Ve (z)| < € exp(—?). (15)
This property implies the existence of 1. o € R? such that [:(z) — Y 00| <
¢’ exp(—c/e). The second problem, which remains open, is to find d., depending

on g and v, such that Y. oo = 0 or at least |1 | < ¢’ exp(—c/e). This is
equivalent to find d. such that the solution of (14) satisfies

/we(z',ég)dz’ =0
S

or the weaker condition [ (2, £3) dz’ < ¢’ exp(—c/e).
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3.2. Solution of the first problem

The exponential decay (15) follows from the decay property proved in the next
section, and more precisely from Theorem 2 applied to

(¢7 7T)(.’E) - ("pea 56)(1'/1 z3 + 67_7)

and to L = max(ef,ely).
The assumption [, ¢35 = 0, that is [ te3(z’,€7) dz’ = O follows from the
condition ¥ |r, = M de/¢3 + g — de (the proof is similar to the one of (8)).

4. A RESULT OF EXPONENTIAL DECAY

Let (¢, ) satisfy

€ (HL w®D)P, 7€ L2 o®), / Vo <

~uDG+ o= VX tsb £0° Ve Vs =0 v. SF (16)
/¢3 A’ =0, |§(0)| < E
b3

where

be R}, by =0,

a = a(z3), a3 =0, a=0 in [243,00), a € (W1°((0, 00)))3,

and let L = max(4,¢5), where £; and ¢, are the periods with respect to z; and
x3. Then, the following decay property holds:

THEOREM 2. Assume L < 1/1—[ where k is given by (18). Then, for all
z3 2 L,

/\333
Vé(2)| < nexp(-=3) an
with A and p independent of L and ¢ (they may depend on E, v, a and b).

A similar result was proved in (Amirat et al., 1997) for Navier—Stokes equa-
tions, that is without the terms ¢3b + a - V. We will give the outlines of the
proof with these additional terms, which relies on similar method than this of
(Amirat et al., 1997), to which the reader is referred for details.

At first, we will prove that the mean value @(z3) of ¢ over a cross section
possesses a limit at infinity. Then, we will use this property to adapt the method
used (cf. (Ames and Payne, 1989; Galdi, 1994; Horgan and Wheeler, 1978;
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Ladyzhenskaya and Solonnikov, 1983)) for Dirichlet condition to the periodic
one, by using the Poincaré—Wirtinger inequality instead of the Poincaré one.
We denote for ¢t > 0,

={reR:7' €8, = > t},

Ti={zeR:2' €S, z; =t},

(therefore © = Og, & = %), 0; = 0/9,, and V = (81,8,). The mean value
being defined by

Zléz/d)x t)dz’,

the Poincaré—Wirtinger inequality on X; gives

6 — Bll(z2s)y < KLIVwdll(z2(s))s (18)

where & is a universal constant. In fact, one could choose here x equal to the
best constant for the Poincaré—Wirtinger inequality in the disk of surface 1, and
= +/£10;. This follows from the fact that the constant for any set S of given
surface can be bounded by the constant for a disk of same surface. An easier
method consists to use a similarity with respect to x; with ratio £, /¢, and to use
an inequality in a square.
Let us now prove the following result.

LEMMA 3. For all 3 > 0,

$3(z3) =0 (19)

and there exists ¢oo € R? such that
_ _ 2 L2 g
1B(z3) — ool < / V6. 0)

Let us remark that the right-hand side in (20) goes to 0 as x3 — oo.
Proof. Proof of (19). Since ¢ is periodic with respect to z; and x;, for all

positive ¢ we have [ 81¢(z',t) da’ = [; Br¢p(a’,t) dz’ = 0. Therefore, V- = 0
implies

=/V-¢(:r’,t)dx'=/83¢3 (@, t) dz’
5 S
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