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To the memory of Robert L. Bivins, Nicholas C. Metropolis,
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Preface

The original motivation for this monograph was to set forth the early contri-
butions from the Theoretical Division at Los Alamos National Laboratory to
the foundations of chaos theory. Overviews of work done up to 1983 have al-
ready been given in LA-2305,1959 and in LA-9705,1983, which are available
electronically on request from the Laboratory. These reports remark on the
foundations of the subject as set forth in early papers by Stein and Ulam [1],
N. Metropolis et al [2-3], Feigenbaum [4-9, 12], Feigenbaum et al [10], Beyer
and Stein [11], Beyer et al [13], Stein [14], and the book by Bivens et al [15].
These are the primary references leading to the viewpoints developed in this
monograph. The evolution of ideas beginning with the above references is
an important ingredient of this monograph. It is this aspect that is focused
on in the Preface, but this is intertwined by a preview of a major shift in
viewpoint that developed as the writing progressed.

Principal properties promoted and developed by Bivins et al [16] are those
of the inverse graph, which for a general function f with real values f(x)
is a collection of single-valued complex functions called branches. For the
case at hand, the basic function is the parabola p¢, which is defined by its
set of values p¢(z) = (x(2 — x), € (—o0,00). The parameter ( is, for the
most part, taken to be real with values of ¢ in the closed interval ¢ € [0.2].
(It turns out, however, that all real values ( € (—o0,00) are important.)
This method based on properties of the inverse graph was itself motivated
by the discovery that the inverse graph had the property of being sometimes
complex and sometimes real, but with the extraordinary property that each
such inverse function becomes real at a characteristic value of ¢ € [0, 2], and
remains real for all greater values of (. Thus, a theory emerged that was
based on function composition, one that also allowed the creation of objects
such as curves and fixed points.

The major shift in viewpoint occurred when an algorithm was discovered
during the write-up of the monograph that allowed the generation of the
inverse graph for n — 1 to n. This placed the subject clearly in the arena of
a complex adaptive system, where a complex adaptive system is taken to be
a system whereby a few principal axioms lead to a system rich in structure
and predictive power. For the problem at hand, this was realized by some
simple implementable rules, ones that could also be calculated numerically
and verified visually. Thus, the idea of an algorithmic-computer-generated
inverse graph had evolved that fits well with the notion of a complex adaptive
system. But what about applications and predictability?
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viii PREFACE

The complex adaptive system viewpoint is further enriched by proper-
ties of the inverse graph that can be interpreted in terms of combinatorial
concepts such as a total order relation on all branches of the inverse graph
that exist at a given value of (, an order relation that is never violated, up
to and including all positive values of (. Moreover, this labeling of branches
of the inverse group can be realized by hook tableaux, which are special
Young standard tableaux, or, equivalently, by special Gelfand-Tsetlin pat-
terns. Such patterns can be realized as isotropic quantum oscillators.

The complex system applications do not end here; they continue still into
biology and beyond: see Bell et al [20] and Bell and Torney [21] with yet
further applications to Galois groups by Byers and Louck [23] and to Conway
numbers by Byers and Louck [24-25].

Most importantly for this monograph the issue of an application to Gen-
eral Relativity arises based on the mathematical operation of function com-
position; the case for a complex adaptive system has been established.
Whether or not it provides any meaningful insights into General Relativ-
ity remains to be seen. The authors have no experience working in General
Relativity other than a general introduction, which is inadequate for such
judgments. But there is still an obligation to point out the possibilities. It
appears that the existence of A Fully Deterministic Chaos Theory is a
basic property with a potential application to General Relativity.

The first author takes full responsibility for the viewpoints presented
in this monograph. It is, of course, the case that these viewpoints could
not have emerged without the extraordinary interaction between computer
calculations and the development of theory.

A somewhat unusual style of presentation has been utilized in this mono-
graph. Many pictures of inverse graphs at various parameter-values (; <
Cy < -+ < (4 < --- are given that illustrate crucial properties of the (-
parameter evolution of the inverse graph. Thus, the notion that the sys-
tem under study is a complex adaptive system is re-enforced by computer
calculations in which the inverse graph exhibits the predicted properties.
Sufficiently many computer graphs are included, as needed to exhibit a par-
ticular property. For a vivid mental picture, it is often useful to think of { as
time. It is in this time-evolution of the n-th iterate of the inverse graph that
the classification by words on two letters comes into play, their fundamental
role being to enumerate the branches of the inverse graph. The patterns
exhibited by explicit computer computations of the shape of graphs and the
expression of their explicit mathematical forms is a nice example of how one
mode of presentation generates and re-enforces insights into the other. This
accounts for the dedication of this work to the memories of R. L. Bivins,
Nicholas C. Metropolis, and Myron L. Stein. World Scientific graciously al-
lowed the inclusion of Myron’s name on the cover, since his computational
contribution was completed before his death. It is quite impossible to express
the compassion and support of Editor Lai Fun Kwong.

The organization of this work, the many pictures of the inverse graph
aside, is quite standard, as detailed in the Contents. It is emphasized
that this monograph is far too technical and detailed to be a textbook. It is
intended for readers with a perchance for the unusual and unexpected. Most
will probably have a background in physics or mathematics.
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Chapter 1

Introduction and
Point of View

In this opening chapter, a synthesis is given of the results found in Refs. [1-
5, 15-19]. The ideas, procedures, and definitions introduced in this Chapter
are drawn from these references. Slight variations in notations may occur.
The idea of this overview is to capture many of the over-riding features of
the so-called (-evolution of the various graphs without giving all the many
details needed for their complete description.

1.1 Function Composition and Graphs

The principal mathematical operation that produces most curves generated
and discussed in this monograph is the operation on pairs of functions known
as composition. The composition of a pair of functions f and ¢ is denoted
by fog. It is defined by giving its value, denoted (f o g)(x), in terms of the
values of the functions f and g, as expressed by

(f o)) = f(g(a)). (L.1)

Thus, (fog)(x) is the value of f(x) at © = g(x). The operation of composition
is noncommutative, but associative:

fog#gofi (fogloh=fo(goh), (1.2)
as verified directly from the definition (1.1).

The composition of pairs of functions generalizes directly to that of the
composition of arbitrarily many functions:

(fiofao f3)(x) = fu (fz (f:s(«’”))) ;

(fio fao fao fo)(x) = fu (fz (f:}(.f4(ff?)))>a (1.3)

1



CHAPTER 1. INTRODUCTION AND POINT OF VIEW

)

(fio---o fnn0o fu10fn)(x) = fi (fn—? (fn—l (frt(:l'))) )

Because the rule of composition is associative, no additional parenthesis pairs
are needed in the left-hand side of these relations. There are n parenthesis
pairs ( ) on the right-hand side: n left parentheses (one following each f;,
and each matched with a right parenthesis), thus constituting a parenthesis
pair ( ), where all n right parentheses occur in succession at the right-most
end of each of relations (1.3).

The inverse of a function f with values f(z) is denoted by f~! and is
defined here to be a single-valued function with values denoted by f~'(x)

such that
(@) = 17 (f(@) == (14)

Thus, the inverses to f are solutions of the equation f(y(z)) = z, and in
general there can be several distinct solutions; careful attention must be
paid to the domains of definition of f and f~!. In this monograph, distinct
inverses to a given single real-valued function f are called branches. An
invelse f~1 to f can also be defined by the composition rule f*1 o f =
fo f~' = I, where I is the identity function with values I(x) = The
interest hele is not with all the subtleties that arise in considering collectlons
of functions and their compositions, but, rather, with the properties of the
n-fold composition of a single function — the parabola defined by

pe(x) =Cx(2 —x), ¢ € (0,00); = € (—00,00). (1.5)

Most of the interest of the present monograph is directed toward the devel-
opment of the properties of the 2"-fold compositions of the two branches of
the inverse function to p¢(z) as defined by

Bo(liz) = 1+ ,/1— % Be(~Liz)=1—/1— é (1.6)
¢ € (0,0), € (—x,()-

Each of these branches is, of course, a real single-valued function of x
in the domain # € (—00,(), and the two functions join smoothly at @ = ¢
to constitute what will be called a p-curve. A p-curve is the joining of two
branches as illustrated in the following schematic picture for the (z, y)-planar
graph of the branches ®.(1;z) and ®.(—1;2) for z € (0,(]:

Y p-curve
2
®¢(1;x) : upper branch
1 (1.7)
®¢(—1;x) : lower branch
G =41l I g
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This picture depicts a right-moving p-curve with increasing ¢. The general
polynomials of interest are the real polynomials of degree 2" in x defined by
the n-fold composition of p¢:

z€(1)==(p<0p<0~~-°zk)0£)==p<(---(pc(pd10)>---)» (1.8)

where there are n parenthesis pairs in this expression for an n-fold com-
position of one and the same parabola function p¢. It is very important to
observe that the parameter ( is fixed at the same value in the composition
(1.8). Thus, while it is allowed that ¢ be any value ¢ € (0,00), the oper-
ation of composition is to be effected only for specified ¢ in its domain of
definition, as illustrated by

i) = (pconc)(@) =Ca(2-2)

r=Cx(2—x)
= 2z(2—1) (2 —Cx(2— ac)). (1.9)
A very useful rule satisfied by such compositions is:

pi(@) = (s opl) @) =52 (b2 ().
m=1,2,...,n—1, (1.10)
ph(a) = pe(@) = C2(2 - 2).

The n-fold iterate pg(x) of pgl.(;r.) is a polynomial of degree 2" in the
variable  and degree 2" — 1 in the parameter (. Thus, the polynomial is of
the form

2‘"
p) =Y ") F, (1.11)
k=0

where the coefficients are real polynomials in the parameter { with leading
coefficient agn)(c ) = 2" — 1 and successive coefficients of lower degree. A
recurrence relation for the polynomials is given by

n—1

pE(x) = 02" o pP)(@) = ™" (pl@))- (1.12)

. . . . n
Thus, an explicit recurrence for the coeflicients (zi_ )(Q) themselves can be

obtained, if desired, by combining relation (1.12) and (1.11) with the appro-
priate relations from (1.10). The main point is: The polynomials pg‘(ﬂ:) are
uniquely defined for all positive n.

The graph H él of interest is defined as the set of points in the Cartesian

plane R? given by

Hf = {(:I:, p’cl'(;zf))‘:l: € [0, oo)}, ¢ € (0,00). (1.13)



4 CHAPTER 1. INTRODUCTION AND POINT OF VIEW

Many of the interesting features of this graph make their appearance for
x € [0, 2], although other domains, even including negative x, are of interest.
A principal feature of all graphs presented in Chapters 5-7 is that they are
presented at a value of the parameter ¢ that is specified (fixed). The values
of x then determine the basic shape of the underlying curve in the (z,y)-
plane for the specified value of (; this set of real points constitute the graph
H: It is a continuous smooth curve (all derivatives exist at all points) in

R?. This set of points is also called the shape of the graph ¢ at C.

As the parameter ¢ changes continuously, the shape of the curve, which
is denoted by HE, changes smoothly. In particular, the change in shape for
increasing ¢ is called the (-evolution of the curve (or graph). Indeed, it is
often very useful to think of ( as a time-like parameter: hence, the shape
7{2’ is a “snapshot” of the graph at a given time, and the (-evolution is the
nonlinear time progression of the graph. The (-evolution of the graph is
unexpectedly elegant, expressing its unfolding shape in terms of the creation
of new “subcurves” and their symmetry. It is the purpose of this monograph
to give its description for all n.

There is a simple underlying reason for the origin of the features appearing
in the (-evolution of the graph H é": This is revealed in the structure of the
inverse graph. 1f Hy = {(x, f(z)) |z € Dy} is the graph of a real single-
valued function f with values f(x) and domain of definition x € Dy C
R, then, by definition, the set of points Hy-1 = {(z, f~'(z)) |z € Dy},
where Dy-1 C R is the domain of definition of the branch f —1, constitutes a
subgraph of the inverse graph. But there is such an inverse graph for each
distinct inverse function f~! of f; hence, it is the union U -1 Hyp-1 over all
distinet inverse subgraphs that constitutes the full inverse graph to H ;. This
simple description of the inverse graph holds unambiguously for the inverse
graph of the n-fold composition of the parabolic map p¢(x) = ¢z(2 — x),
although care must be taken in defining the inverse function. In terms of
these notations, the graph H ZJ is given by

H? = Hyp = {(;1,-, Pl () ‘1‘ e o, oo)}. (1.14)

where the n-fold composition of the basic parabola 1)41(;1:) =pc(r) =Cx(2—)

is defined in (1.8). It is the inverse graph to Hyy that is sought for cach

specified ¢ € (0,00). In terms of the present notations, the inverse graph

is denoted by H,-:, where f = p’g. For the case at hand, this somewhat
(4

awkward notation is replaced by

v =Hsa . (1.15)

q f.; f=PZ

Thus, G’g denotes the inverse graph to the graph H ;- By definition:
The graph H and its inverse G’CL are subsets of points in the real plane R?.

It is useful to illustrate the above definition of the inverse graph G’g before
proceeding to the general case.



