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A Categorical Approach to Imprimitivity
Theorems for C*-Dynamical Systems



Abstract

Imprimitivity theorems provide a fundamental tool for studying the represen-
tation theory and structure of crossed-product C*-algebras. In this work, we show
that the Imprimitivity Theorem for induced algebras, Green’s Imprimitivity Theo-
rem for actions of groups, and Mansfield’s Imprimitivity Theorem for coactions of
groups can all be viewed as natural equivalences between various crossed-product
functors among certain equivariant categories.

The categories involved have C*-algebras with actions or coactions (or both)
of a fixed locally compact group G as their objects, and equivariant equivalence
classes of right-Hilbert bimodules as their morphisms. Composition is given by the
balanced tensor product of bimodules.

The functors involved arise from taking crossed products; restricting, inflating,
and decomposing actions and coactions; inducing actions; and various combinations
of these.

Several applications of this categorical approach are also presented, including
some intriguing relationships between the Green and Mansfield bimodules, and
between restriction and induction of representations.

Received by the editor June 24, 2002, and in revised form February 2, 2005.

2000 Mathematics Subject Classification. 46L55.

Key words and phrases. Morita equivalence, C*-dynamical systems, coactions, crossed
products.

This research was partially supported by National Science Foundation Grant #DMS9401253,
the Australian Research Council, the Deutsche Forschungsgesellschaft (SFB 478), the European
Union (RTN QSNG, Contract No. HPRN-CT-2002-00280), Arizona State University, and the
University of Newcastle, Australia.

vii



Contents

Introduction
Outline
Epilogue

Chapter 1. Right-Hilbert Bimodules
1.1. Right-Hilbert bimodules and partial imprimitivity bimodules
1.2.  Multiplier bimodules and homomorphisms
1.3. Tensor products
1.4. The C-multiplier bimodule Mo (X ® C)
1.5. Linking algebras

Chapter 2. The Categories
2.1. C*-Algebras
2.2.  Group actions
2.3. Group coactions
2.4. Actions and coactions
2.5. Actions and coactions on linking algebras
2.6. Standard factorization of morphisms
2.7. Morphisms and induced representations

Chapter 3. The Functors
3.1. Crossed products
3.2. Restriction and inflation
3.3. Decomposition
3.4. Induced actions
3.5. Combined functors

Chapter 4. The Natural Equivalences
4.1. Statement of the main results
4.2. Some further linking algebra techniques
4.3. Green’s Theorem for induced algebras
4.4. Green’s Theorem for induced representations
4.5. Manstfield’s Theorem

Chapter 5. Applications
5.1. Equivariant triangles
5.2. Restriction and induction
5.3. Symmetric imprimitivity

Appendix A. Crossed Products by Actions and Coactions
A.1. Tensor products

101
101
111
114

117
117



vi

A2,
A3.
A4
A5,
A.6.
AT
A8.
A9.

CONTENTS

Actions and their crossed products

Coactions

Slice maps and nondegeneracy

Covariant representations and crossed products
Dual actions and decomposition coactions

Normal coactions and normalizations

The duality theorems of Imai-Takai and Katayama
Other definitions of coactions

Appendix B. The Imprimitivity Theorems of Green and Mansfield

B.1.
B.2.

Imprimitivity theorems for actions
Mansfield’s imprimitivity bimodule

Appendix C. Function Spaces

C.1.
C.2.

The spaces C.(T, X) for locally convex spaces X
Functions in multiplier algebras and multiplier bimodules

Appendix. Bibliography

121
126
130
132
138
139
143
148

151
151
155

159
159
161

167



Introduction

Given a dynamical system (A, G, a) in which a locally compact group G acts
by automorphisms of a C*-algebra A, Mackey and Takesaki’s induction process
allows us to construct representations of (A, G, a) from representations of the sys-
tem (A, H,a|g) associated to any closed subgroup H of G. Much is known about
induction: there are imprimitivity theorems which allow us to recognize induced
representations, and the process is functorial with respect to intertwining operators.

In the modern framework of Rieffel, one introduces the crossed product A x, G,
which is a C*-algebra encapsulating the representation theory of (A,G,a), and
induces instead from A x, H to A x, G; induction of representations from one
C*-algebra D to another C is achieved by tensoring the underlying Hilbert space
with a Hilbert bimodule ¢ Xp, which has a D-valued inner product and in which
the left action of C is by adjointable operators. An imprimitivity theorem tells us
how to expand the left action of C to one of a larger algebra E in such a way that
gXp is an imprimitivity bimodule — that is, reversible. The theorem then says
that a representation of C is equivalent to one induced from D if and only if there
is a compatible representation of E.

Duality tells us how to recover a dynamical system (A,G,a) from its crossed
product A X, G. When G is abelian, the crossed product carries a canonical dual
action @ of the dual group G , and the Takesaki-Takai Duality Theorem says that the
double dual system ((A Xao G) Xz G , G, a) is Morita equivalent to the original one.
For nonabelian G, one has to use instead the dual coaction of G, and recover the
system from the crossed product by this dual coaction. For duality to be a useful
tool, one has to understand these coactions and their crossed products, and a good
deal of progress has been made in the past 15 years. (An overview of this area has
been provided in an Appendix; see also [52] for a recent survey.) Crucial for us
is Mansfield’s theory of induction for crossed products by coactions: he provides a
Hilbert bimodule which allows us to induce representations from crossed products
by quotient groups, and an imprimitivity theorem which characterizes these induced
representations.

Induction and duality interact in deep and mysterious ways. One general prin-
ciple appears to be that duality swaps induction of representations with restriction
of representations. This is enormously appealing: restriction of representations
(for example, passing from a representation U of G to the representation U|g of
a subgroup H) is ostensibly a trivial process. Theorems making this induction-
restriction duality precise have been proved, first for abelian groups in [14], and
later for arbitrary groups in [29, 18]. We have gradually learned that it is best
to prove such theorems by manipulating the Hilbert bimodules which implement
the various induction and restriction processes; however, the bimodules involved



2 INTRODUCTION

are hard to work with — especially Mansfield’s — and the results can safely be de-
scribed as “technically challenging”. To make things worse, applications frequently
require that various isomorphisms and equivalences are equivariant, and one is con-
tinually having to construct compatible coactions on bimodules and check that they
carry through complicated arguments. So it is definitely of interest to find a more
systematic approach.

Our goal here is to provide such a systematic approach and to use it to complete
our program of induction-restriction duality. We shall show that many of the key
technical problems in this area amount to asking for functoriality of some construc-
tion or naturality of some equivalence between functors. Asking for equivalences
to be equivariant amounts to asking for an equivalence in a different category,
one which includes coactions or actions in its objects and morphisms. We have
found that functoriality of the various crossed-product constructions encompasses
many results of the kind “Morita equivalent systems have Morita equivalent crossed
products”, and naturality of the equivalences many results of the kind “induction
is compatible with Morita equivalence”.

To help see how our approach works, we consider one of our main theorems. It
concerns the generalization of Green’s Imprimitivity Theorem to crossed products of
induced algebras, which is, loosely speaking, the analogue of the imprimitivity theo-
rem for actions « of a subgroup H which do not extend to actions of G. The induced
algebra Ind§ (A, @) is a subalgebra of Cy(G, A) which carries a left action 7 of G by
translation, and the generalization says that the crossed product _Indg(A, a)x,; G
is Morita equivalent to A X, H. We shall prove that this equivalence is natural,
and that it is equivariant for the dual coaction 7 of G on Ind$ (4, a) x, G and the
inflation Inf @ to G of the dual coaction on A x, H. To make this precise, we have
to set up categories C of C*-algebras, A(G) of dynamical systems (A4, G, a), and
C(Q) of cosystems (A, G, ) in which § is a coaction of G on A. We then prove that
(A,G,a) — (Ind§(A,a) x, G,7) and (4,G,a) — (A x, H,Inf @) are the object
maps for functors from A(G) to C(G), so that it makes sense to say that they are
naturally equivalent.

When we assert that, for example, (A,G,a) — (A X, G,Q) is a functor, we
are completely ignoring the morphisms, and we cannot appreciate what naturality
means until we deal with them too: a natural equivalence T between two functors
F,G: A — B assigns to each object A of A an equivalence T'(A): F(A) — G(A)
(that is, an invertible morphism 7'(A) in the category B) such that, for each mor-
phism ¢: A — B in A, the diagram

F(4) 22, ga)

F(W)J' lG(‘p)

F(B) 5+ G(B)

commutes in B. In our categories, the morphisms will be based on Hilbert bimod-
ules; in A(G), for example, a morphism from (A, G, ) to (B,G, ) will be given
by a Hilbert bimodule 4 Xp with a compatible action 7y of G. The composition of
morphisms will be based on the balanced tensor product of bimodules, so that a
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diagram

—— B

—— D
of Hilbert bimodules commutes if Y ¢ Z = X ®g W as Hilbert A — D bimod-
ules; in A(G) or C(G) this isomorphism has to be appropriately equivariant. The
equivalences in these categories are the morphisms which are given by imprimitiv-

ity bimodules, so to prove that two of our functors F,G are naturally equivalent
amounts to finding imprimitivity bimodules p(4)X(A)g(a) such that

X(A) ®ga) G(Y) = F(Y)®pnB) X(B)

as Hilbert F(A) — G(B) bimodules for each Hilbert bimodule 4Yg. The modules
are the usual ones, but many of the details needed to establish these isomorphisms
and their properties are new.

This paper, like any other in which coactions appear, involves some gritty
technical arguments. We will therefore begin by outlining the main new issues
which we face in this program, and how we have dealt with them. Those who are
interested in seeing how the categorical ideas impact when there are no coactions
around are encouraged to read our previous paper [17] first. Indeed, this might
help even those who are already coaction-compliant!

Outline

We begin in Chapter 1 with a detailed discussion of the Hilbert bimodules on
which our morphisms are based. The axioms are intrinsically asymmetric; to see
why, note that a homomorphism ¢: A — B gives B the structure of an A-module,
but not the other way round. Our modules 4 X will be right Hilbert B-modules
with a left action of A given by a nondegenerate homomorphism x of A into the
C*-algebra L(Xp) of adjointable operators on X. As in [29], we shall call these
right-Hilbert bimodules to emphasize that the Hilbert-module structure is on the
right; we have stuck with this name because the alternatives (C*-correspondences
or Hilbert bimodules) do not carry the same sense of direction. The theory of right-
Hilbert bimodules is similar to that of imprimitivity bimodules, but there seem to
be enough subtle differences to warrant a detailed discussion.

The first section contains the basic facts about multiplier bimodules and ho-
momorphisms between bimodules. These are used repeatedly: a coaction on a
bimodule X, for example, is by definition a homomorphism of X into the multi-
plier bimodule M(X ® C*(G)). Our treatment is similar to that of imprimitivity
bimodules in [20]. Section 1.1.3 is about the balanced tensor products which are
used to define the composition of morphisms; we need to know in particular how
this process extends to multipliers. We also discuss external tensor products, which
are crucial for the definition of coactions on Hilbert bimodules. The last section of
Chapter 1 is about linking algebras. These are used primarily as a technical tool
in the proofs of naturality (an idea lifted from [21], and expounded in an easier
setting in [17]).

In Chapter 2 we describe the categories in which we work. The basic category
C of C*-algebras appears in [17]; we review the main facts in Section 2.1. The
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objects are C*-algebras and tlie morphisms from A to B are the isomorphism
classes of right-Hilbert A — B bimodules: we have to pass to isomorphism classes
to ensure that the composition law [¢Yg]o[4XB] = [4(X ®¢ Y) ] has the required
properties. The other categories A(G), C(G) and AC(G) are associated to a fixed
locally compact group G, and are obtained by adding, respectively, actions of G,
coactions of G, and both actions and coactions to the objects and morphisms of C.
Adding actions is relatively routine, but (as will be no surprise to those familiar
with them) adding coactions is a little harder. (Coactions on Hilbert bimodules first
appeared in [2].) We show that in each of these categories, the equivalences (that
is, the invertible morphisms) are the morphisms in which the underlying bimodules
are imprimitivity bimodules, and then that every morphism is a composition of
a morphism coming from a nondegenerate homomorphism ¢: A — M(C) and a
morphism based on an imprimitivity bimodule ¢ Xp.

.In Chapter 3 we show that the various crossed products appearing in our theo-
rems define functors between appropriate categories. There are two main problems.
The first is to define suitable crossed products. We are interested here in coactions
and nonabelian duality, which is basically a theory about reduced crossed prod-
ucts, so we have decided to give in gracefully and use reduced crossed products
throughout. (This is definitely a choice: we have already proved the naturality of
Green’s Imprimitivity Theorem for full crossed products in [17], and providing we
were willing to omit all statements about the coactions, we could presumably do
the same here.) But because the objects in our categories are C*-algebras rather
than isomorphism classes of C*-algebras, it is important that we don’t just choose
a regular representation willy-nilly. So we shall discuss a specific realization of the
reduced product. The second main problem is to define crossed products of the
Hilbert bimodules which define the morphisms. We do this differently for actions
and coactions; for actions we make heavy use of the convenience of C.-functions,
and for coactions we realize the crossed product inside a certain multiplier bimod-
ule. For imprimitivity bimodules, it is handy to recognize that if L(X) is the linking
algebra of X, then the bimodule crossed product X x G embeds as the top right
corner of L(X) x G, and we have the important relation L(X) x G = L(X x G)
almost by definition. We should mention that defining these crossed products and
establishing their properties has been done before; see [2], (7], [6], [20], and [30].

We gather all the necessary functors in Chapter 3; even though some are easy,
it is convenient to deal with them all at once. The key difficulty is the same in each
case: it is not obvious that crossed products preserve composition. This amounts
to proving things like

(X®pY)x G2 (X xG)®pxe (Y xG),

and again our techniques are different for actions and coactions.

Our main theorems are in Chapter 4. We have already discussed the first, which
is about crossed products of induced algebras, and which we prove in Section 4.1.
The proofs of this and our other main theorems follow the same general pattern.
We factor each morphism 4 X p as a composition of a nondegenerate homomorphism
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¢: A — M(C) and an imprimitivity bimodule ¢Yg. To prove that

F(4) =2 ¢(a)

F(s@)l lG(v)

— G
F(C) 5 G(O)

commutes, we extend the homomorphisms (F(¢), G(¢)) to a homomorphism of
imprimitivity bimodules T'(A) — M (T'(C)), and use a general lemma which says
this suffices. To prove that

Fc) 22 g(c)
F(Y)J( lc(y)
F(B) 5 G(B)

commutes, we realize T'(C') and T'(D) as the diagonal corners in an imprimitivity
bimodule Z over the linking algebras L(F(Y)) and L(G(Y)), and use a general
lemma from [21] which identifies both F(Y) ® p(gy T(B) and T(C) ®¢c) G(Y)
with the top off-diagonal corner in Z. The hard part in both halves is to build the
compatible coaction.

It may be known that this theorem about crossed products of induced algebras
is a generalization of Green’s Imprimitivity Theorem, but it does not appear to be
well-documented. We therefore give a careful derivation, which could be of some
independent interest (see the discussion preceding Theorem B.3 in Appendix B).
We then use this to deduce our second main theorem, which is a natural and
equivariant version of the Imprimitivity Theorem itself. There are many possible
variations on this theme, depending on choices of full and reduced crossed products
and on whether or not the subgroup is normal. Here we have already decided to
use reduced crossed products, and we have further chosen to discuss what happens
for normal subgroups. We have made this choice because in this case there are
several more actions and coactions in play, and the theorem has something to say
about all of them. To see what is happening here, recall that if IV is normal, we can
view the imprimitivity algebra (A ® Co(G/N)) Xag+ G in Green’s theorem as the
crossed product (A x4 G) x5 G/N by the restriction of the dual coaction; thus this
imprimitivity algebra carries a dual action (@|)” of G/N as well as a dual coaction
(e ® 7)" of G. Our theorem says that Green’s imprimitivity bimodule matches
(@l)” with the so-called decomposition action of G on A x, N and (o ® 7)~ with
the inflation to G of the dual coaction of N on A x, N. This observation seems
to be new. Indeed, we believe that the equivariance and the naturality are both
potentially important new pieces of information about Green’s theorem.

Our third main theorem is a version of Mansfield’s Imprimitivity Theorem.
This has all the same features as the version of Green’s theorem which we have
just discussed: Mansfield’s Morita equivalence of (A x5 G) x5 N with A x5 G/N is
natural and equivariant for canonical actions and coactions on the crossed products.
For this theorem, the difficult part of the proof is establishing the naturality with
respect to ordinary homomorphisms ¢: A — M(C'); we have to work hard to build
compatible homomorphisms on Mansfield’s bimodule.
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In Chapter 5 we give some applications to our motivating problem of under-
standing the relationships between induction and duality. In Section 5.1, we uncover
some new and very intriguing relationships between Green and Mansfield induction.
Important special cases of these results say that the Green bimodules X {(i}(A) and

Mansfield bimodules Yg/G(A) are in duality:
Xy (A) x G2YE) (A X G)

and
X (AXG) =Y (A) xG.

Results of this type require several applications of our main theorems, and it is vital
that we know everything is appropriately equivariant. Our main new application
to induction-restriction duality is Theorem 5.16, which completes the program of
(14, 29, 18] by handling the restriction of representations from A x G to A x4 N.
We close with a new application of linking-algebra techniques to the Symmetric
Imprimitivity Theorem of [51].

Since this project is intrinsically involved with nonabelian duality, we have
necessarily made heavy use of coactions and their crossed products. There are
several different sets of definitions available: the subject is stabilizing, but some
key questions of a fundamental nature remain unresolved, and hence this is taking
longer than one might have wished. So we have included as an appendix a survey
of the area, which outlines what we believe to be the most satisfactory approach
and describes how this approach relates to the others in the literature.

A second appendix collects the precise versions of the imprimitivity theorems
we need; various formulations appear in the literature, so we felt it would be handy
to record exactly what we want.

Finally, the third appendix contains some technical results on function spaces
with values in locally convex spaces which are used throughout the text to construct
multipliers of bimodules. In applications, the locally convex spaces will be multiplier
algebras or bimodules with the strict topology: we need to know, for example, that
strictly continuous functions of compact support from G to M (X) define multipliers
of X x G, and that they do so in an orderly fashion.

Epilogue

Although this paper has turned out much longer than we intended, we have
made all sorts of simplifying assumptions to keep the length down, and these are
probably logically unnecessary. First of all, we have deliberately excised twisted
crossed products, though some residual traces remain in the presence of the decom-
position actions and coactions. Any serious application of these ideas to the Mackey
machine — which was, after all, our original motivation [14] — will require that
we can handle twisted crossed products. Second, we have used reduced crossed
products throughout. For our present applications involving nonabelian duality
and crossed products by coactions, this makes sense: the current duality theorems
all factor through the reduced crossed product. But for applications to ordinary
crossed products this is not necessarily desirable, and there are surely versions of
Theorem 4.1 and Theorem 4.2 for full crossed products. We have already described
a version of Green’s theorem in [17], but we neglected questions of equivariance
there. Third, we have considered only some of the important Morita equivalences.
The others, such as the Symmetric Imprimitivity Theorem and the Stabilization
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Trick for twisted crossed products, should be natural too. (Working in the context
of general locally compact quantum groups was not even an issue, since there are
currently no imprimitivity theorems available in that generality!)

On the other hand, we have taken the liberty of treating actions separately from
coactions — rather than viewing actions of G as coactions of Cy(G) — although
this would have led to a much shorter exposition. Our main reasons for this are
that we think that actions are much easier to understand than coactions, and that
we feel there may be more general interest in the action case than in the coaction
case.

We hope that we have given convincing evidence that issues involving functori-
ality, naturality and equivariance are likely to occur frequently in our subject, and
that it will pay for us get in the habit of dealing with them as we go. We also
hope that we have made a few other points along the way: our view of induced
C*-algebras as an obstruction to imprimitivity, our heavy use of linking-algebra
techniques to identify imprimitivity bimodules, and the seemingly deep and strange
relations between induction and duality, should all have applications elsewhere. For
instance, the strong connection between these ideas and equivariant K K-theory is
well-documented in [2] and [30]. Several of the ideas are also present in the ap-
proach of [9] and [8] towards a Mackey machine for the Baum-Connes conjecture,
and are applied to the Connes-Kasparov conjecture in [10].






CHAPTER 1
Right-Hilbert Bimodules

In this chapter we gather together the basic theory of right-Hilbert bimodules.
We start with the basic definitions and some important notation which shall be
used throughout this work.

1.1. Right-Hilbert bimodules and partial imprimitivity bimodules

Let B be a C*-algebra. Recall that a Hilbert B-module is a vector space X
which is a right B-module equipped with a positive definite B-valued sesquilinear
form (-,-)p satisfying

(1.1) (z,y-b)p = (z,y)pb and (z,y)5 = (y,z)B for all z,y € X,b € B,

and which is complete in the norm |z| = |(z,z)g|'/2. Our primary reference
for Hilbert modules is [54], and a secondary reference is [33]. Some notational
conventions: we often omit the dot (-) when writing module actions; and in general,
if (u,v) — wv: U x V — W is a pairing among vector spaces, then for P C U and
Q C V we write PQ to mean the linear span of the set {uv | u € P,v € Q}.

DEFINITION 1.1. Let A and B be C*-algebras. A right-Hilbert A— B bimodule is
a Hilbert B-module X which is also a nondegenerate left A-module (i.e., AX = X)
satisfying '
(1.2a) a-(x-b)=(a-x)-b and
(1.2b) (a-z,y)p = {(x,a" - y)B
foralla € A, z,y € X, and b € B. We write 4 Xp to indicate all the data, and we
call X full if it is full as a Hilbert B-module, i.e., (X, X) 5 = B. In general, if X is

not full, we shall write By for the closed ideal (X, X)z C B, and we call Bx the
range of the inner product on X.

REMARK 1.2. (1) In recent years, objects very similar to right-Hilbert bimod-
ules have been introduced into the literature: for example, the A — B correspon-
dences of [39]. In many cases (as in [39]), the left module action is permitted to
be degenerate; we require it to be nondegenerate so that we can extend it to the
multiplier algebra M(A) (see below).

(2) Note that if X is an A — B correspondence, then AX is a closed A — B
sub-bimodule of X, and therefore becomes a right-Hilbert A — B bimodule. In
fact we have AX = AX = {az | a € A,z € X}, since it follows from Cohen’s
factorization theorem that AX = AAX C AX (we refer to [54, Proposition 2.33]
for a statement and an easy proof of Cohen’s factorization theorem in the case
where A is a C*-algebra). More generally, a similar application of Cohen’s theorem
implies that for any C*-subalgebras C' and D of A and B, respectively, we have
CX ={cx|ceC,xe X}and XD = {zd |z € X,d € D}.

9



10 1. RIGHT-HILBERT BIMODULES

ExaMPLE 1.3. If B is a C*-algebra, then B becomes a full right-Hilbert B — B
bimodule in a natural way by putting

a-b-c=abc and (a,b)p=a"b for a,b,c € B.

If ¢: A — M(B) is a nondegenerate C*-algebra homomorphism, then B becomes
a full right-Hilbert A — B bimodule with left action given by

a-b=p(a)b.

More generally, if p: A — M (B) is an arbitrary (possibly degenerate) *-homomor-
phism, then B becomes an A — B correspondence and, therefore, X = p(A)B is
a right-Hilbert A — B bimodule. We call a right-Hilbert bimodule 4 Xp arising in
this way standard. If ¢: A — M(B) is nondegenerate, i.e., if X = ¢(A)B = B,
then we say that 4Bp is a nondegenerate standard right-Hilbert bimodule.

REMARK 1.4. It is clear that a nondegenerate standard right-Hilbert bimodule
ABp is full. The converse is not true in general. To see an example let B = M,(C)
and let ¢: C — M3(C);¢(A) = (3 §). Then M;(C)p(C)M;(C) = M3(C) and X =
©(C)M,(C) = C? is a full right-Hilbert C — M(C) bimodule, but ¢ is degenerate.

If X and Y are Hilbert B-modules, Lg(X,Y’) denotes the set of maps T: X —
Y which are adjointable in the sense that there exists T*: Y — X such that

(Tz,y)p = (z,T"y)B forallz € X,y €Y.

Such T' are automatically bounded and B-linear [54, Lemma 2.18]. The notation
is shortened to £(X,Y) if B is understood, and Lg(X) (or just L(X)) if X =Y.
In the latter case £(X) is a C*-algebra with the operator norm ||T|| = sup{||Tz|| |
|lz|| <1} [54, Proposition 2.1].

Now, if 4Xp is a right-Hilbert A — B bimodule then for each a € A the
map z — a -z is adjointable (consequently the associativity condition (1.2a) is
redundant), so we get a homomorphism x: A — Lp(X) such that

k(a)x =a -z,

and which is nondegenerate in the sense that k(A)X = X. Conversely, every right-
Hilbert bimodule arises in this way: If X is a Hilbert B-module and k: A — L(X)
is a nondegenerate homomorphism, then X becomes a right-Hilbert A— B bimodule
via
a-z=k(a)x.

Thus a right-Hilbert A — B bimodule is nothing more nor less than a Hilbert B-
module X together with a nondegenerate homomorphism A — £(X).

If X and Y are Hilbert B-modules, K(X,Y) denotes the compact operators from
X to Y: by definition, it is the closed span in £(X,Y) of the maps z — y(z,2)p
forx € X and y € Y. K(X) = K(X,X) is a closed ideal in £(X), and in fact
L(X) = M(K(X)) [54, Corollary 2.54]. In particular, if X is a Hilbert B-module,
then the formula

(1.3) kx) (&, y) 2=z (Y, 2) g

defines a full (X )-valued inner product on X, which gives X the structure of a
left Hilbert (X )-module. Then B acts via adjointable operators on the right of

xx)X, and Bx = (X, X) g identifies with the compact operators of the left Hilbert
lC(X)—module IC(X)X-



