

MATHEMATICAL
STRUCTURES FOR
COMPUTER GRAPHICS

STEVEN J. JANKE

B T T AP : i 1! ,"'-‘T,"
N

=t j\ .’:‘i‘__‘r',' .
& 1 H
it

WILEY

Copyright © 2015 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Janke, Steven J., 1947- author.

Mathematical structures for computer graphics / Steven J. Janke, Department of Mathematics,
Colorado College, Colorado Spring, CO.

pages cm
Includes bibliographical references and index.

ISBN 978-1-118-71219-1 (paperback)

1. Computer graphics—Mathematics. 2. Three-dimensional imaging—Mathematics. I. Title.

T385.J355 2014

006.601'51-dc23 2014017641

Printed in Singapore

MATHEMATICAL
STRUCTURES FOR
COMPUTER GRAPHICS

To Deborah

PREFACE

Computer graphics includes a large range of ideas, techniques, and algorithms
extending from generating animated simulations to displaying weather data to
incorporating motion-capture segments in video games. Producing these images
requires an array of artistic, technical, and algorithmic skills. Software can help by
offering a flexible user interface, but under the hood, mathematics is orchestrating
the images. Not everything in graphics begins with a mathematical result, but nearly
everything is founded on mathematical ideas, because ultimately algorithms direct
the computer to light up specified pixels on the screen.

The evolution of computer graphics started in the early 1970s, and since then key
mathematical ideas and techniques have risen to the surface and have proved their
worth in solving graphics problems. This text tries to lay out these ideas in a way
that is easily accessible to those interested in a sound footing in the field and to those
software engineers eager to fill in gaps where their understanding faltered.

Organized to mimic the flow of a standard graphics course, this manuscript grew
from the notes for an undergraduate graphics course taught regularly over a span of 20
years. Appropriate mathematical ideas are introduced along with the details of various
techniques. The style is more informal than formal, yet the approach includes thor-
ough derivations in the hope that context and careful arguments will build confidence
in constructing new approaches and new algorithms.

One or two courses in calculus should give the readers sufficient mathematical
maturity to work through the text, and even if their linear algebra background is lim-
ited to matrix multiplication, they should be able to develop some useful algebraic
and geometric tools. Standard mathematics courses rarely have the time to cover all
the important mathematical constructs used in graphics such as the description of
curves necessary for surface design, or homogeneous coordinates necessary for affine

PP

xiv PREFACE

transformations. This text fills in those gaps and looks behind the results enough to
understand how they fit into the rest of mathematics. It does not rely on the rigor-
ous theorem/proof format, and instead uses intuition and example to develop careful
results. Although the mathematics is interesting in its own right, the text hopefully
does not lose sight of the ultimate goal which is to produce interesting and useful
images.

There are plenty of examples and exercises to help fix the ideas and several sug-
gestions of other directions to investigate. At the end of each chapter (except the last),
there is a section titled Complements and Details that collects a few historical notes,
several calculation details, and occasionally some ideas which may lead to interest-
ing tangents. The text is independent of any particular graphics system, but it does
have OpenGL in mind when presenting details of the viewing frustum in the chapter
on visibility. Otherwise, there are programming exercises throughout, which can be
done with almost any language and graphics interface.

Chapters 1-3 carefully develop vector geometry assuming very little background.
They highlight the difference between vectors and points and emphasize the connec-
tion between geometry and algebra. Coordinate-free expressions and homogeneous
coordinates are both introduced.

Chapters 4 and 5 examine transformations, both linear and affine. Along the way,
they develop basic matrix algebra, construct various transformations including the
perspective transformation, examine coordinate systems (world, local, and camera),
unravel Euler angles and quaternions, and consider alternate coordinate systems.

Chapters 6 and 7 develop modeling techniques through an exploration of poly-
gons (particularly triangles), polyhedra, parametric description of curves, Lagrange
interpolation, Bézier curves, splines, nonuniform rational B-splines (NURBS), and
surface construction.

Rendering is covered in Chapters 8 and 9, starting with a look at the view frus-
tum, hidden surface algorithms, and simple ray tracing. Then an elementary lighting
model is examined in detail before introducing shading, shadows, the bidirectional
reflectance distribution function (BRDF), the basics of radiosity, and texture mapping.

The final chapter collects three separate mathematical techniques that repre-
sent arguably different paradigms. Bresenham’s algorithm starts a discussion of
pixel-based mathematics, Perlin’s noise prompts a visit to random distributions, and
L-systems offer an alternative algebraic description of organic forms.

When used as a course text, the first five chapters as well as selections from the
last five could serve to cover an appropriate amount of material. The idea is to rely
on the text for the mathematics and supplement it with algorithms perhaps specific
to the available graphics systems. There are both mathematical and programming
exercises in each chapter. Throughout the examples in the text, the calculation results
are rounded to two or three decimal places. This still leads to round-off error, and
a good exercise for the student is to reconcile any perceived discrepancies in the
results.

In the way of acknowledgement, first note that most of the figures in the text
were prepared using Mathematica®. Second, many thanks go to my graphics stu-
dents over the years who prompted me to learn the nuances of the subject and who

PREFACE XV

offered constructive feedback on my courses. Thanks also go to Cory Scott whose
comments on the completed manuscript were essential and to Craig Janke for cover
ideas along with continued encouragement. Finally, without my wife Deborah and
her unending support, this project would have dissolved on the screen.

STEVEN J. JANKE
Colorado College, 2014

CONTENTS

PREFACE xiii

1 Basics 1

1.1 Graphics Pipeline, 2
1.2 Mathematical Descriptions, 4
1.3 Position, 5
14 Distance, 8
1.5 Complements and Details, 11
1.5.1 Pythagorean Theorem Continued, 11
1.5.2 Law of Cosines Continued, 12
1.5.3 Law of Sines, 13
1.54 Numerical Calculations, 13
1.6 Exercises, 14
1.6.1 Programming Exercises, 16

2 Vector Algebra 17

2.1 Basic Vector Characteristics, 18
2.1.1 Points Versus Vectors, 20
2.1.2 Addition, 20
2.1.3 Scalar Multiplication, 21
2.1.4 Subtraction, 22
2.1.5 Vector Calculations, 22

viii

2.1.6 Properties, 24
2.1.7 Higher Dimensions, 25

2.2 Two Important Products, 25
2.2.1 Dot Product, 25
2.2.2 Cross Product, 29
2.3 Complements and Details, 34
2.3.1 Vector History, 34
2.3.2 More about Points Versus Vectors, 35
2.3.3 Vector Spaces and Affine Spaces, 36
24 Exercises, 38
2.4.1 Programming Exercises, 39
Vector Geometry
3.1 Lines and Planes, 40
3.1.1 Vector Description of Lines, 40
3.1.2 Vector Description of Planes, 44
32 Distances, 46
3.2.1 Pointto a Line, 46
3.2.2 Point to a Plane, 48
3.2.3 Parallel Planes and Line to a Plane, 48
3.24 LinetoalLine, 50
33 Angles, 52
34 Intersections, 54
34.1 Intersecting Lines, 54
3.4.2 Lines Intersecting Planes, 56
3.4.3 Intersecting Planes, 57
35 Additional Key Applications, 61
3.5.1 Intersection of Line Segments, 61
3.5.2 Intersection of Line and Sphere, 65
3.5.3 Areas and Volumes, 66
3.5.4 Triangle Geometry, 68
3.5.5 Tetrahedron, 69
3.6 Homogeneous Coordinates, 71
3.6.1 Two Dimensions, 72
3.6.2 Three Dimensions, 73
3.7 Complements and Details, 75
3.7.1 Intersection of Three Planes Continued, 75
3.7.2 Homogeneous Coordinates Continued, 77
3.8 Exercises, 79
3.8.1 Programming Exercises, 82
Transformations
4.1 Types of Transformations, 84

CONTENTS

40

83

CONTENTS ix

4.2 Linear Transformations, 85
4.2.1 Rotation in Two Dimensions, 88
4.2.2 Reflection in Two dimensions, 90
4.2.3 Scaling in Two Dimensions, 92
4.2.4 Matrix Properties, 93
43 Three Dimensions, 95
4.3.1 Rotations in Three Dimensions, 95
432 Reflections in Three Dimensions, 101
4.3.3 Scaling and Shear in Three Dimensions, 102
4.4 Affine Transformations, 103
4.4.1 Transforming Homogeneous Coordinates, 105
4.4.2 Perspective Transformations, 107
4.4.3 Transforming Normals, 110
4.4.4 Summary, 111
4.5 Complements and Details, 112
4.5.1 Vector Approach to Reflection in an Arbitrary Plane, 113
4.5.2 Vector Approach to Arbitrary Rotations, 115
4.6 Exercises, 121
4.6.1 Programming Exercises, 123

5 Orientation 124

5.1 Cartesian Coordinate Systems, 125
5.2 Cameras, 132
5.2.1 Moving the Camera or Objects, 134
5.2.2 Euler Angles, 137
5.2.3 Quaternions, 141
5.2.4 Quaternion Algebra, 143
5.2.5 Rotations, 145
5.2.6 Interpolation: Slerp, 148
5.2.7 From Euler Angles and Quaternions to Rotation Matrices, 151
53 Other Coordinate Systems, 152
5.3.1 Non-orthogonal Axes, 152
5.3.2 Polar, Cylindrical, and Spherical Coordinates, 154
5.3.3 Barycentric Coordinates, 157
54 Complements and Details, 158
5.4.1 Historical Note: Descartes, 158
5.4.2 Historical Note: Hamilton, 158
5.4.3 Proof of Quaternion Rotation, 159
55 Exercises, 161
5.5.1 Programming Exercises, 163

6 Polygons and Polyhedra 164
6.1 Triangles, 164

6.2

6.3

6.4

6.5

6.1.1 Barycentric Coordinates, 165

6.1.2 Areas and Barycentric Coordinates, 166
6.1.3 Interpolation, 171

6.14 Key Points in a Triangle, 172

Polygons, 178

6.2.1 Convexity, 179

6.2.2 Angles and Area, 180

6.2.3 Inside and Outside, 184

6.2.4 Triangulation, 187

6.2.5 Delaunay Triangulation, 189
Polyhedra, 192

6.3.1 Regular Polyhedra, 194

6.3.2 Volume of Polyhedra, 196

6.3.3 Euler’s Formula, 200

6.3.4 Rotational Symmetries, 202
Complements and Details, 205

6.4.1 Generalized Barycentric Coordinates, 205
6.4.2 Data Structures, 206

Exercises, 208

6.5.1 Programming Exercises, 211

Curves and Surfaces

7.1

72

7.3

7.4
7.5
7.6

7.7

Curve Descriptions, 213

7.1.1 Lagrange Interpolation, 218

7.1.2 Matrix Form for Curves, 222

Bézier Curves, 223

7.2.1 Properties for Two-Dimensional Bézier
Curves, 226

7.2.2 Joining Bézier Curve Segments, 228

7.23 Three-Dimensional Bézier Curves, 229

7.2.4 Rational Bézier Curves, 230

B-Splines, 232

7.3.1 Linear Uniform B-Splines, 233

7.3.2 Quadratic Uniform B-Splines, 235

7.3.3 Cubic Uniform B-Splines, 240

7.3.4 B-Spline Properties, 242

Nurbs, 246

Surfaces, 250

Complements and Details, 260

7.6.1 Adding Control Points to Bézier Curves, 260

7.6.2 Quadratic B-Spline Blending Functions, 262

Exercises, 264

7.7.1 Programming Exercises, 266

CONTENTS

212

CONTENTS xi

8 Visibility 267

8.1 Viewing, 267
8.2 Perspective Transformation, 269

8.2.1 Clipping, 273

8.2.2 Interpolating the z Coordinate, 275
8.3 Hidden Surfaces, 278

8.3.1 Back Face Culling, 281

8.3.2 Painter’s Algorithm, 283

8.3.3 Z-Buffer, 286
8.4 Ray Tracing, 287

8.4.1 Bounding Volumes, 289

8.4.2 Bounding Boxes, 289

8.4.3 Bounding Spheres, 291
85 Complements and Details, 293

8.5.1 Frustum Planes, 293

8.5.2 Axes for Bounding Volumes, 294
8.6 Exercises, 297

8.6.1 Programming Exercises, 298

9 Lighting 299

9.1 Color Coordinates, 299
9.2 Elementary Lighting Models, 303
9.2.1 Gouraud and Phong Shading, 307
9.2.2 Shadows, 311
9.2.3 BRDFs in Lighting Models, 315
9.3 Global Illumination, 319
9.3.1 Ray Tracing, 319
9.3.2 Radiosity, 323
9.4 Textures, 325
9.4.1 Mapping, 325
9.4.2 Resolution, 332
9.4.3 Procedural Textures, 333
9.5 Complements and Details, 335
9.5.1 Conversion between RGB and HSV, 335
9.5.2 Shadows on Arbitrary Planes, 336
9.5.3 Derivation of the Radiosity Equation, 337
9.6 Exercises, 339
9.6.1 Programming Exercises, 340

10 Other Paradigms 341

10.1 Pixels, 342
10.1.1 Bresenham Line Algorithm, 342

10.2

10.3

10.4

10.1.2 Anti-Aliasing, 345

10.1.3 Compositing, 347

Noise, 350

10.2.1 Random Number Generation, 350
10.2.2 Distributions, 351

10.2.3 Sequences of Random Numbers, 353
10.2.4 Uniform and Normal Distributions, 354
10.2.5 Terrain Generation, 356

10.2.6 Noise Generation, 357

L-Systems, 361

10.3.1 Grammars, 362

10.3.2 Turtle Interpretation, 363

10.3.3 Analysis of Grammars, 365

10.3.4 Extending L-Systems, 367
Exercises, 368

10.4.1 Programming Exercises, 369

APPENDIX A Geometry and Trigonometry

Al
A2
A3

Triangles, 370
Angles, 372
Trigonometric Functions, 373

APPENDIX B Linear Algebra

B.1 Systems of Linear Equations, 376
B.1.1 Solving the System, 377
B.2 Matrix Properties, 379
B.3 Vector Spaces, 381
REFERENCES

INDEX

CONTENTS

370

376

383
387

BASICS

It is rather amazing that a finite rectangular array of colored dots (called pixels as an
abbreviation of picture elements) is sufficient to display the nearly limitless collec-
tion of images we recognize as realistically or symbolically representing portions of
our world. The power of combinatorics helps us to explain the situation (millions of
possible colors for each pixel in the large display array), but we can hardly conceive
of all the images we have already seen let alone those that are yet to be seen. From
this reductionist viewpoint, the whole idea of computer graphics is to set the right
pixels to the right color. Easier said than done. Yes, a plain red square is easy, but
one that looks like it is made of bricks is tougher, and one that includes a human face
taxes the best of known algorithms.

Of course, the computer graphics enterprise includes any and all manipulations of
images. We can start from scratch and produce a photo-realistic image of a new air-
liner or perhaps construct a landscape design complete with a variety of plants. Maybe
the challenge is to translate CAT (computerized axial tomography) scan data into an
image of the brain or correct the color balance in a photo being readied for publica-
tion. To bring some order to the very long list of possibilities, it is helpful to consider
two main categories: either we are generating images, or we are processing existing
images. Both require mathematical tools, but the first category encompasses the broad
mathematical approaches necessary to understand three-dimensional descriptions of
objects and their interactions with light. The second category starts with an image
and draws on the mathematics of transformations and filters necessary to convert it
into a more useful visual representation. In this survey of mathematical tools that are

Mathematical Structures for Computer Graphics, First Edition. Steven J. Janke.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

2 BASICS

useful in computer graphics, we will focus on the first category where we can start
with the basics of mathematical descriptions and work through the generation and
manipulation of objects in space.

1.1 GRAPHICS PIPELINE

As we examine the steps necessary to produce a new image on the computer screen,
we are tracing what is often called the graphics pipeline. The pipeline analogy is
intended to highlight the stages we go through both in designing images and in
processing them on the computer to produce the final properly colored array of
pixels on the display screen. As one frame is being completed, the next is making its
way down the pipeline. Most modern hardware includes the main microprocessor
(central processing unit, CPU), the graphics microprocessor (graphics processing
unit, GPU), and various associated memory banks. The CPU and GPU work in
parallel, as the CPU supplies descriptions of objects to the GPU which in turn
processes the descriptions to determine which pixels on the screen need to be turned
on. The exact order of all the required steps depends on the hardware and on the
graphics software we use. However, we can make a more general description of
the pipeline to enumerate the stages of image generation and set the context for
understanding the associated mathematics. Our pipeline then looks like this:

1. Modeling. We need a mathematical description of objects, background, and light
sources as well as a description of their placement in a scene. For more primitive
objects such as buildings which are more or less constructed out of simple plane
surfaces, the description includes a list of vertices and a list showing which
vertices determine individual faces. For curved surfaces, we may attempt an
accurate description (e.g., a sphere) or rely on an approximation with small flat
triangles. These descriptions are, of course, just the beginning, as we need also
to know the details of how the objects are placed in a scene and how light will
interact with them. Mathematically, a geometric description including vertices
and faces (surfaces) forms the kernel of our model, but certainly if the object is
a tree or if there is fog affecting the lighting, the description may well require
a deeper extension of the standard high school geometry. This modeling stage
can be done with design software, allowing artists to manipulate the scene to
reach the desired effect.

2. Transformation. Building a scene requires positioning objects relative to each
other and includes rotation, scaling, and translation. Transformations reposition
an object and convert its coordinate descriptions appropriately. Then, to view
the scene, imagine a camera placed somewhere in space looking in a particular
direction. (Alternatively, imagine your eye positioned in space looking at the
scene.) Another transformation adjusts the mathematical descriptions so that
they are relative to the camera position.

3. Visibility. Depending on where the camera is, we may not see the entire scene.
Rather, some parts are outside the field of view and consequently can be ignored

