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Preface

Theory of nonlinear differential equations play an important role in science, engineering and
social sciences since, many problems of these branches have been solved by the use of its
methods and properties. Also, various powerful methods have been used to explore different
possible solutions of the problem considered. Recently, nonlinear differential equations of
fractional order have been proved to be a valuable tool for the modeling of many areas and the
use of fractional order derivatives and integrals gives better approximation than that of integer-
order. Moreover, several numerical methods were employed for the numerical treatment of
the nonlinear problems.

In recognition of Srinivasa Ramnaujan’s contribution to Mathematics, the Government
of India declared that Ramanujan’s birthday to be celebrated as ‘National Mathematics Day’
on 22nd December of every year. Also, Government of India declared the year 2012 as the
‘National Mathematical Year’ to commemorate his 125th Birth Anniversary.

In view of the above, Department of Mathematics, Periyar University, Salem organized
this conference to exchange recent developments, discuss issues of common concern, establish
contacts, and gather information that would be of use to those in the Mathematics community.
The conference aims to present a broad and interdisciplinary overview of the current, state-of-
the-art methods and techniques for characterizing partial differential equations.

There were 10 expository lectures by eminent Mathematicians in the field which mainly
focused on Partial Differential Equations with emphasis on parabolic and hyperbolic problems
one of the thrust areas of current research in the world. Out of 41 papers presented the
referees have recommended only 25 papers for publication. The Department of Mathematics
expresses its sincere thanks and gratitude to all the referees and also to the various organizations
for their support in organizing this conference.

On behalf of the organizing committee the convener acknowledge, with gratitude, the
generous financial support provided by the National Board for Higher Mathematics (Department
of Atomic Energy), Mumbai, Department of Science and Technology and Council for Scientific
and Industrial Research, New Delhi.

P. Prakash
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Analytical and numerical solutions of an one dimensional fractional
sub-diffusion equation with Neumann boundary conditions

G. Sudha Priya and P. Prakash
Department of Mathematics, Periyar University, Salem - 636 011, Tamil Nadu, India.
E-mail: priyasudhal985@gmail.com

Abstract: In this paper, one-dimensional fractional sub-diffusion equation (FSDE) with Neu-
mann boundary conditions is studied both analytically and numerically. An implicit difference
approximation scheme (IDAS) is developed. We analyze the local truncation error and discuss
the stability using the energy method. Then we prove the convergence. Numerical results are
provided to verify the accuracy and efficiency of the proposed algorithm.

1 Introduction

Fractional differential equations have been the focus of many studies due to their frequent
occurrence in various fields such as physics, chemistry, viscoelasticity, fluid mechanics, biology,
acoustics, control theory and psychology ete. A realistic model of a physical phenomenon having
dependence not only on the instant time, but also on the previous time history can be success-
fully achieved by using fractional calculus. Such a calculus can be named as non-integer order
calculus and the subject can be traced back to the genesis of integer order differential calculus
itself. Though Leibniz made some remarks on the meaning and possibility of fractional deriva-
tives of order 1/2 in the late seventeenth century in a rigorous series of papers from 1832 to
1837, where he defined for the first time an operator of fractional integration. Today fractional
calculus extends the derivative and anti-derivative operations of differential and integral calculus
from non-integer orders to the entire complex plane. There are several approaches to the gen-
eralization of the notion of differentiation to fractional orders, for example, Riemann-Liouville,
Grunwald-Letnikov, Caputo and generalized functions approach [8 11]. Riemann-Liouville frac-
tional derivative is mostly used by mathematicians but this approach is not suitable for real
world physical problems since it requires the definition of fractional order initial conditions
which have not been given physically meaningful explanation. Caputo introduced an alterna-
tive definition which has the advantage of defining integer order initial conditions for fractional
order differential equations. Unlike the Riemann-Liouville approach which derives its definition
from repeated integration, the Grunwald-Letnikov formulation approaches the problem from the
derivative side. This is mostly used in numerical algorithms.

Nowadays fractional diffusion equations play an important role in modeling anomalous dif-
fusion and sub-diffusion systems, in the description of fractional random walk, unification of
diffusion and wave propagation phenomena see for example the reviews in [1-3, 5-7, 14, 15] and
the references there-in. Liu has carried out so many works on the finite difference method of
fractional diffusion equations [2, 3, 15]. Langlands and Henry [5] investigated the accuracy and
stability of an implicit numerical scheme for solving a fractional diffusion equation with zero
flux boundary condition.



The purpose of this paper is to solve the fractional sub-diffusion equation with Neumann
boundary conditions using the Implicit Difference Approximation Scheme and give the stability
and convergence analysis. The model problem considered here is

Ou(z,t _ O?u(x,t
(Bt ) = ngl v [K,Y—g(:-zg—z] + f(z,t), 0<z<L, 0<t<T. (1)
The initial condition for (1) is u(z,0) = w(zx), (2)

and the Neumann boundary condition for (1) is
uz(0,t) = ¢(t), us(L,t) =&(2), (3)

where K, is the generalized diffusion constant, 0 < v < 1, UDLl “Tu(z,t) denotes Riemann-
Liouville fractional derivative of order 1 — «y of the function u(z,t) defined by [8-10], that is,

” 1 0 (" wu(z,71)
D™ )= | ———
and f(z,t),w(z), #(t),£(t) are known smooth functions. We assume that the equations (1)-(3)
have a unique solution u(z,t) € Cj:tl ([0, L] x [0,T7]). Then (1) can be put in the equivalent form

13 . O%u(x,t)

OD?[U(JIJ,t) - u(a:,O)] = A‘y'_'_ai_g— +g(1:,t), (5)

where g(z,t) = D] " f(z,1).

The remainder of the paper is organized as follows: in section 2, the analytical solution of the
fractional sub-diffusion equation (FSDE) is given. In section 3, we present an implicit difference
approximation scheme (IDAS). We approximate the first and second-order space derivatives by
the central difference, then use the Grunwald-Letnikov discretization for the approximation of
the time fractional derivative. In section 4, the matrix form of the difference scheme is given
and the solvability for the linear system of equations is discussed. In section 5, we give the
local truncation error, investigate the stability by energy method; we prove that the scheme is
unconditionally stable for all -y in the range 0 < v < 1 and derive the global accuracy and prove
the convergence of the scheme. Finally some numerical results are provided in section 6 which
are in agreement with our theoretical analysis. The paper ends with a brief conclusion section.
In this paper, we use the "empty sum” convention y,, u' =0 for n < k.

2 Analytical solution of TFDE

Using the relationship between Caputo fractional derivative and Riemann-Liouville fractional
derivative, (5) can be rewritten as

8%u(z,t)

Dtz ) = Ky ol

+g(z,1),

where §'D]u(x,t) denotes the caputo fractional derivative of order 4 of the function u(z,t)
defined by [10]

§D{ Mu(z,t)

B 1 Lou(z,7) dr
—I‘(l—'y)/o o  (t—71)r’



Applying finite cosine transform [4] with respect to the spatial variable x, we have
4
[l -1]
where a = I, H(t) = _2K 2 [(—=1)" M uy (L, t) + ug(0,t)] and U(n,t), U(n,0), G(n,t) are

finite cosine transform of u(z t), u(z,0), and g(z,t) respectively. Applying Laplace transform
with respect to the time variable t, we have

sl H(s) + G(n,s)
Uln,0) + s + Ky(na)?

EDYU(n,t)] — U(n,0) = — K., (na)*U(n,t) + H(t) + G(n,t),

U(n,s) =

Applying inverse Laplace transform, we have
U(n,t) = E,1[—K,(na)*t"|U(n,0) + (H(t) + G(n,t)) "' E, ,[- K, (na)*t"], (6)

where E, g is the Mittag Lefler function defined by Ea g = Y req F(aiﬂi) and f(t)*g(t) is the

convolution of these functions and is defined by f(t)*g(t) = fo (1)g(t — 7)dr. Applying inverse
finite cosine transform, we have (0, )
u(z,t) = == + Z U(n, t) cos(naz),

n=1

where U(n,t) is given in (6).
3 The implicit difference approximation scheme

3.1 Partition and the solution vector

We introduce a uniform grid of points (z;,tx), with ¢; = jh, j =0,1,2,...m, and ty = k7, k=
0,1,2,...n, where m and n are positive integers, h = L/m is the mesh-width in x and 7 = T'/n,
the time step. Let Q; = {z;|0 < j < m} and Q, = {t4|0 < k < n}. The exact solution u of
FSDE at the point (z;,tx) is denoted by uf and the corresponding solution vector is denoted
by u* = u(ty) = (uf,uf,...,uk)T. The exact solution of an approximating difference scheme
at the same point will be denoted by UJ'-c and the corresponding solution vector is denoted by

= U tr) = (U UL, = TR ).

3.2 Derivation of numerical scheme

Using the relationship between the Grunwald - Letnikov formula and the Riemann - Liouville
fractional derivatives [9, 10], we can approximate the fractional derivative by

k
DY fuj = uf) =777 3Nl ] + o), ™
i=0
where [
Ai = (_1)1 ( i ) ) i= 0,1,...,](7. (8)

‘We use the first and second order central difference schemes for the first and second order spatial
derivatives respectively [12]:

J J+1 j—1 2
_ =L 4 oh?), ©)
o?u¥ uk | —2ub ok
31'; = A h; 1= + o(h?). (10)

3



3.3 An implicit difference approximation scheme (IDAS)

The initial boundary value problem (2), (3) and (5) can be approximated by the following

implicit difference approximation scheme. For 1 < k < n, we have

- K
- k—1
77 U}“+ZA,—U]. —ZA,»U;’ - h—;[Uf+l—2Uf+UJ’-‘_l]+gf,
0<j<m,
Ul - Uk
—12T1 = o(tx)
Uit — U=
'Tl = &),
U = w(z;), 0<j<m,

(11)

(12)

(13)

where gj’-‘ = g(x;,tx). Substitute (12) and (13) in (11) when j=0 and j=m respectively, to have

~ = R = ] 9K
T [U(’,“ + Z ANUS™ - Z MU | = U - Ugl - * = o(te) + g6,
] K,
— k k—1 0 . k k
W[U +Z’\U ;’\U - h2[UJ+1 2U;7 +Uj_ 1]+QJ’
i=gxsm—1,
= = | 2K, 2K
— k k—1 0 . k k 2 k
= [Um + ;/\iUm - Z:A,-Um = =7 Ik _ - Uk + = £(tx) + g5,
UJ(-’ = w(z;), 0<j<m.

Introduce the scaling parameter u = K.,77/h* and after rearranging the terms, we have

k—1 k-1
(1+2p)Uf = =D NUS™ + Y NUG +2uUf — 2hud(ty) + 778,
i=1 1=0
(1+2u)UF = —Z)\ Us- '+Z,\ U+ plUfyy + U ]+ 775,
1<j<m-1,
(14 2u)Uk = -ZA Uk- ’+Z,\ UL +2uUF | + 2hpé(te) + 7795,
1=0
Uf = w(‘rj)1 0<j<m,

or

(14 2p)UE — 2uUF = Z XTI Z NUS — 2hud(te) + 77 gk,

Il

1=0
k—1 ) k—1

—HUf L+ (U 20UF —pUfyy = =D AU+ ) UG + 775,
= i=0

1S.7'S77'l_1~,

(15)



k—1 k—1

UK + (A +2u)UY = =D NUET+ > NUD, + 2hué(t) + gk,
i=1 =0
U_? = w(z;), 0<5<m.

4 Matrix form of the IDAS
We give the matrix form of the IDAS (15) or (16) by

k-1 k—1
AU* = =Y AU+ ANU°+G, 1<k<n,
i=1 =0
where
14+2p  —2p
- 142 —p
A — . 5 ) = ,
-p 1+2p  —p
=2 1420/ iyxmet)
—2hpg(ti) + 77 g§
g}
Gk = : , 1<k<n
T'ygv’?n—l

2h/~"£(tk) + T‘Yg?kr:'z (m+1)x1
For the solvability of the scheme, we have

Theorem 4.1. The difference equations (15) or (16) has a unique solution. ‘

(16)

Proof. Because, for any u = Kﬂ,%; > 0, the coefficient matrix A for the difference equation
is strictly diagonally dominant. Consequently the matrix A is non singular, thus is invertible.

Hence completes the proof of the theorem.

5 Theoretical analysis of the IDAS

5.1 The local truncation error

The local truncation error of IDAS (15) or (16) is

k—1 k—1
; K
k —y |,k k— k
B o= e 1—2*1'”?] - b — 2+ oo}
i=1 =0
k—1 k—1
=y 7 l:uf + Z /\,-u;-”_z - Z )\iugl - ODZ[u;? — uf]
i=1 i=0

b T |
J k k k
+K, [ R (i1 — 2uj +u;_,)

= oft+h?), 1<j<m-—-1, 1<k<n.

O

(17)



Using the Taylor series expansion of u¥ about the point (xq, tx), we get
k—1 k—1 9K
_ k—i
R = o [ St - Y] - 2k - -t - o
k-1 k-l
=7 [u'& + Z Aiug =t — Z /\iug} — oD} [uf — u))
i=1 i

. [02ub h? 02u0 3
”"[aﬁ h2{2 g Ok )}J

= o(r+h), 1<k<n. (18)

Il

Similarly, using the Taylor series expansion of u*,_; about the point (z,,%x), we get

Rf, =o(r+h), 1<k<n. (19)

5.2 Stability

We introduce some relevant notations and properties. Suppose that u* = {uf]O <j73<m0<L
k < n} and v* = {vﬂO < j <m,0 <k <n} are two grid functions on 2, x .. We introduce
the following notations:

k k k k k
7 T h ] 7 A h ] ] T h )
k .k
u ’U U U 1/2
(ur, o) = b | 220+ Zu’“v*+ mmim |t = (e, uf)

Let (~IJ’-‘ be the approximate solution of (15) or (16) and ef = UJ’F - (7]", 0<j<m, 0<k<n,
denote the corresponding error.

Lemma 5.1. [3] The coefficients \; (i =0,1,2,...) satisfy

1. =1, Mi=—, <0, i=12,....
2. % A =0.
3. Ek ' X >0 and consequently — Z:.;l Ai<l, forall k>1.
Lemma 5.2. Suppose that ¥ (0 < k < n) is error of IDAS (15) or (16). Then we have

k—1 k—1
Ie¥1® < =D Mlle* 112 + Y Mllel?, k=1,2,...n
i=1 i=0
Proof. For the IDAS defined by (15) or (16), for 1 < k < n, its error satisfies

k—1
(1+2p)ef = — Z et + Z i€l -+ 2uel, (20)
=



