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Preface

A programme on Moduli Spaces was held from 4 January to 1 July 2011 at
the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK. This
volume is based on courses and lectures that took place during this semester
and reflects some of the main themes that were covered during the activities.

Moduli spaces play a fundamental role in geometry. They are geomet-
ric versions of parameter spaces. That is, they are geometric spaces which
parametrise something — each point represents one of the objects being
parametrised, such as the solution of a particular equation, or a geometric struc-
ture on some other object. In the language of physics, a moduli space models
the degrees of freedom of the solutions of some system of equations.

The programme was very successful, with a great deal of activity taking
place. There were three main areas of research involved in the programme,
namely derived categories, Higgs bundles and character varieties, and vec-
tor bundles and coherent systems. Topics that were covered included BPS
invariants of 3-folds from derived categories of sheaves, and their motivic and
categorified refinements, Hodge polynomials of character varieties, motives of
moduli spaces of Higgs bundles and their relation to BPS invariants, Gromov—
Witten invariants, notions of stability, Bridgeland stability, stability for pairs,
geometric invariant theory constructions, wall-crossing formulae using Kirwan
blow-ups, d-manifolds, a motivic version of Géttsche’s conjecture, the Hilbert
scheme of the moduli space of vector bundles, derived categories of quiver rep-
resentations, mirror symmetry conjecture, ramified non-abelian Hodge theory
correspondence, Hitchin fibration and real forms, parahoric bundles, parabolic
Higgs bundles and representations of fundamental groups of punctured sur-
faces, Higgs bundles on Klein surfaces, Higgs bundles and groups of Hermitian
type, Higgs bundles over elliptic curves, geometry of moduli spaces of vor-
tices, coherent systems and geometry of moduli of curves, Brill-Noether loci
for fixed determinant, Green’s conjecture, Butler’s conjecture, etc.

X



X Preface

We saw progress on many of these topics in real time; it is fair to say that
the state of the art looked very different at the end of the six months than it did
in the introductory school at the beginning.
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1

Introduction to algebraic stacks

K. Behrend
The University of British Columbia

Abstract

These are lecture notes based on a short course on stacks given at the Isaac
Newton Institute in Cambridge in January 2011. They form a self-contained
introduction to some of the basic ideas of stack theory.
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Introduction

Stacks and algebraic stacks were invented by the Grothendieck school of
algebraic geometry in the 1960s. One purpose (see [11]) was to give geomet-
ric meaning to higher cohomology classes. The other (see [9] and [2]) was to
develop a more general framework for studying moduli problems. It is the lat-
ter aspect that interests us in this chapter. Since the 1980s, stacks have become
an increasingly important tool in geometry, topology and theoretical physics.

Stack theory examines how mathematical objects can vary in families. For
our examples, the mathematical objects will be the triangles, familiar from
Euclidean geometry, and closely related concepts. At least to begin with, we
will let these vary in continuous families, parametrized by topological spaces.

A surprising number of stacky phenomena can be seen in such simple cases.
(In fact, one of the founders of the theory of algebraic stacks, M. Artin, is
famously reputed to have said that one need only understand the stack of
triangles to understand stacks.)

This chapter is divided into three parts, Sections 1.1, 1.2, and 1.3. Section 1.1
is a very leisurely and elementary introduction to stacks, introducing the main
ideas by considering a few elementary examples of topological stacks. The
only prerequisites for this section are basic undergraduate courses in abstract
algebra (groups and group actions) and topology (topological spaces, covering
spaces, the fundamental group).

Section 1.2 introduces the basic formalism of stacks. The prerequisites are
the same, although this section is more demanding than the preceding one.

Section 1.3 introduces algebraic stacks, culminating in the Riemann—-Roch
theorem for stacky curves. The prerequisite here is some basic scheme theory.
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We do not cover much of the “algebraic geometry” of algebraic stacks, but
we hope that these notes will prepare the reader for the study of more advanced
texts, such as [16] or the forthcoming book. '

The following outline uses terminology that will be explained in the body of
the text.

The first fundamental notion is that of a symmetry groupoid of a family of
objects. This is introduced first for discrete and then for continuous families of
triangles.

In Sections 1.1.1-1.1.3, we consider Euclidean triangles up to similarity (the
stack of such triangles is called 9Jt). We define what a fine moduli space is, and
show how the symmetries of the isosceles triangles and the equilateral triangle
prevent a fine moduli space from existing. We study the coarse moduli space
of triangles, and discover that it parametrizes a modular family, even though
this family is, of course, not universal.

Sections 1.1.4-1.1.6, introduce other examples of moduli problems. In
Section 1.1.4, we encounter a fine moduli space (the fine moduli space of
scalene triangles); in Section 1.1.5, where we restrict attention to isosceles
triangles, we encounter a coarse moduli space supporting several non-
isomorphic modular families. Restricting attention entirely to the equilat-
eral triangle, in Section 1.1.6, we come across a coarse moduli space that
parametrizes a modular family which is versal, but not universal.

In Section 1.1.7, we finally exhibit an example of a coarse moduli space
which does not admit any modular family at all. We start studying oriented
triangles. We will eventually prefer working with oriented triangles, because
they are more closely related to algebraic geometry. The stack of oriented
triangles is called hire

In Section 1.1.8, we first make a few general and informal remarks about
stacks and their role in the study of moduli problems.

The second fundamental concept is that of versal family. Versal families
replace universal families, where the latter do not exist. Stacks that admit versal
families are called geometric, which means topological in Sections 1.1 and 1.2,
but will mean algebraic in Section 1.3.

We introduce versal families in Section 1.1.9, and give several examples.
We explain how a stack which admits a versal family is essentially equal
to the stack of ‘generalized moduli maps’ (or torsors, in more advanced
terminology).

In Section 1.1.10, we start including degenerate triangles in our examina-
tions: triangles whose three vertices are collinear. The main reason we do this

! Contact Martin Olsson, www.math.berkeley.edu/~molsson.



