2 \4%
f 4

(ﬁ\gn
gé?éx

Proceedings of the Fifth IASTED
International Symposium

EXPERT SYSTEMS AND

NEURAL NETWORKS

Theory & Applications

3
Honolulu, Hawaii
August 16-18, 1989

EDITOR: M.H. Hamza

A Publication of
The International Association of Science
and Technology for Development - IASTED

ISBN 0-88986-129-3

ACTA PRESS

ANAHEIM * CALGARY * ZURICH

TABLE OF CONTENTS

Fast Neural Learning Algorithms
- [Barhen, S. Gulati, and N. Toomarian

Asynchronous Nonlinear Holonomic Simulation:
Modeling International Relations
- EK. Newton and P. Alvelda

Methodologies in

DNA: A New ASOCS Model with Improved Implementation Potential
- G.L. Rudolph and T.R. Martinez

A Cone Threshold Unit Network
-~ S.J. Wan and S.K.M. Wong

Neuron Model Using Multi-Input Multilevel-Quantized Digital Phase-
Locked Loop
~ M. Tokunaga, H. Hikawa, I. Sasase, and S. Mori

A Netless Neural Network
—~ N.M. Mazur and P.A. Scott

A Methodical Study of the Rumelhart Model
~ R George, BJ. Geraci, R. Srikanth, and C. Koutsougeras

Programmable Synaptic Devices for Electronic Neural Nets
~ A. Moopenn and A.P. Thakoor

Neural Network Applicability: Classifying the Problem Space
- T. Martinez

Determining Word Lexical Cafegories with a Multi-Layer Binary Per-
ceptron
- LL. Cybulski, H.L. Ferrd, A. Kowalczyk, and J. Szymanski

Capturing Expert Knowledge with Embedded Computer Simulations:
An Interactive A.LD.S. Model as a Case Study
- R.R. Goforth

Accelerating Backpropagation Learning with Novelty-Based Orthogo
nalization
- K Otwell

Knowledge Representation and Reasoning with Bidirectional Excep
tions
—~ S.N.T. Shen, Z. Shensheng, and J. Hsu

Heuristic Evidential Reasoning in a Hierarchical Hypothesis Space
- C-H. Shyu :

RATIO: A Hybrid of RETE and TREAT
~ G.A. Frascadore

An Experience of Programming an Expert System Using C
- KH. Yeung and K.E. Forward

KIDS - A Knowledge Interface Design Support System
- G. 5hi, K. Takeda, and 1. Miyamoto

An Intelligent Diagnostic Physics Tutor
- M.E. Crosby and A.R. Freese

12

16

21

26

31

36

41

45

50

55

60

65

69

75

80

87

Heuristic Search in Expert Database Systems
~ S.-C. Yoon, LJ. Henschen, G.Z. Qadah, and P. Chang

A Solution to the Unbounded Cycle of Recursive Formula
~ R.S. Wu, LJ. Henschen, and P. Chang

Causal Functionality Models: A New Approach for User Interfaces
— C. Perrone and P. Schaefer

Designing Natural [
swering Systems
— E. Park and F. Skove

Interfaces to Logic-Based Question- An-

e 2

An Intelligent Method to Generate Optimal Protocol Test Sequences
— JSK WongandJ.C. Lin

Requirements Tracing Using Knowledge Bases
— L.D. Gable and W. Moseley

‘Terminate-Without-Evaluation’ in Processing Data Intensive Logic
Programs
~ P. Chang L.J. Henschen, S.-C. Yoon, and R S. W

Single-Layer Perceptron Capable of Clessifying 208 + 1 _Liiatilegdd: 11!
Patterns
— K. Ashenayi, H--M. Tai, M.R. Sayeh, ¢.i M T.Mouaf& i

Neurocontrol of Auto-Lock-On Target-T aking Stght Conrrol Sn0om
- K.C. Cheok, J.C. Smith, and J.P. Fernun:ig

An Artificial Neural Network Control Systcnfior @ Seftppecd Ant g
mous Robot
- KE. Nicewamer

Robotic Path Planning and Obstacle Avoidunce: A Neawal Neswntl
Approach
- I.D. Norwood and J.B. Cheatham,Jr.

A Decision Support System Based on Neural Networks
- P.-Y.Li, T-L. Teng and S.-L. Wang

Position and Size Representations by Neural Networks
- K Gouhara, K. Imai, and Y. Uchikawa

An Optimal Learning Rule for a Decision Directed Network
- A.R. England and R.A. Jones

On Learning Rate of Artificial Neural Nets Using Back-Propagation
- T.R. Damarla and P.K. Bhagat

Cross-Fertilization between Connectionist Networks and Highly Paral-
lel Architectures
— J. Barnden and K. Srinivas

Automatic Robot Error Equations Modeler Using Macsyma
- N. Vira and E. Tunstel

Planning for Generalized Blocks Worlds
— W.H. Qian and P. Gaspart

91

96

103

108

111

116

119

124

129

A34

143

148

154

159

163

168

173

OSPERT --- An Expert System for Control of Operating Systems in
Large and Complex Computer Systems
- W. Zhao and M. Berger

Dynamic Generation Rescheduling Based on Expert System in Power
System Emergency Control
- T. M), B.S. Ke hahi, K. Yasuda, R. Yokoyama, T.

Niimu ra

Expert System for Power System Stabilizing Control in Emergency
State
— B.S. Kermanshahi, K. Yasuda, R. Yokoyama, and G. Shirai

A Knowledge Base for Automated Process Plan Generation
— G.H. Abdou and S.B. Billatos

Robust Diagnostics for Manufacturing of Plastic Parts
— LO. Pandelidis

An Integrated Approach to Knowledge-Based Process Planning
— S.B. Billatos and J. Wemple

Integrating Expert System and Decision Support System for Job Shop
Scheduling
- M.-Y.S. Yang

Adaptive Control of Imprecise Distributed Systems
— W. Zhao and M. Berger

Applications of Neural Networks: A Review
— G.N. Reddy, EJ. Carroll, and N.P. Coleman, Jr.

Models of Artificial Neural Networks: An Emerging Learning Tech no-

logy
—~ A.J. Surkan and H. Cao

178

183

188

195

201

206

212

217

222

228

Fast Neural Learning Algorithms

J. Barhen

S. Gulati

N. Toomarian

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109

ABSTRACT

A new theoretical framework for neural learning of non-
linear mappings is presented. The proposed methodology
exploits a new class of mathematical constructs named
terminal attractors which provide unique information pro-
cessing capabilities to artificial neural systems. Terminal
attractor representations are used not only to ensure in-
finite local stability of the encoded information, but also
to provide a qualitative as well as quantitative change in
the nature of the learning process. Typical performance
improvements are in excess of three orders of magnitude
over current state-of-the-art backpropagation techniques.
In a significant departure from prior neuromorphic formu-
lations our algorithms provide a framework for incorpo-
rating event-driven constraints in real-time, avoiding the
necessity to retrain the network.

1. Introduction

A considerable effort has been devoted to the de-
velopment of efficient computational methodologies for
learning. Artificial neural networks, characterized as
massively parallel, adaptive dynamical systems, provide
an ideal framework for interacting with objects of the
real world and its statistical characteristics in the same
manner as biological systems do. Their paradigmatic
strength for potential applications arises from their spon-
taneous emergent ability to achieve functional synthe-
sis, and thereby learn nonlinear mappings, and abstract
spatial, functional or temporal invariances of these map-
pings [1,3,5,8,9,10,11]. Thus, relationships between mul-
tiple continuous-valued inputs and outputs can be estab-
lished, based on a presentation of a large number of a
priori generated representative examples. Once the un-
derlying invariances have been learned and encoded in
the topology and strengths of the synaptic interconnec-
tions, the neural network can generalize to solve arbitrary
problem instances. Although in the past, a number of
neural algorithms have been proposed for functional ap-
proximation, attention has largely focussed on the back-
propagation algorithm because of its simplicity, general-
ity and the promise that it has shown in regard to vari-
ous applications. However, the increasing perception that
back-propagation is too slow to be relevant to most real-
world problems has led to the development of a number
of variant algorithms. Lapedes and Farber [8] proposed a

150-038

master-slave network with sigmoidal nonlinearities to ap-
proximate a continuous time series for forecasting. Pineda
[11] extended the methodology by deriving a recurrent
generalization to back-propagation networks operating in
continuous time. In a similar vein, Pearlmutter [10] con-
structed a procedure for approximating trajectories by
minimizing an error functional between output and tar-
geted temporal trajectories. More recently, Williams and
Zipser [12] proposed a real-time learning algorithm for
training recurrent, continually updated networks to han-
dle temporal tasks.

In a radically different approach, we propose to use a
new mathematical construct, i.e., terminal attractor dy-
namics [1,2,3,13,14] to acquire nonlinear mappings. Ter-
minal attractor representations are used not only to en-
sure infinite local stability of the encoded information,
but also to provide a qualitative as well as quantitative
change in the nature of the learning process. In particular,
the resulting loss of Lipschitz conditions at energy func-
tion minima yields a dramatic increase in speed of learn-
ing. A fundamental problem in neural learning method-
ologies based on dynamical systems concerns the stability
of the activation network as synaptic weights evolve dur-
ing training. Previous approaches [1,8,11] do not guaran-
tee stability. Here, we introduce the concept of “virtual”
terminal attractors which yields an unconditionally stable
neurodynamics.

2 Network Specification

Consider a densely connected neural network with N
graded-response neurons operating in continuously sam-
pled time. To acquire a nonlinear transformation, ¢, from
a Ny-dimensional input domain to the Ry-dimensional
output space, the network is topographically partitioned
into three mutually exclusive regions. The partition refers
to a set of input neurons, Sy, that receive the input com-
ponents, an output set Sy, which provides the desired
output components and a set of “hidden” neurons, Sy,
that encode the representation of the (-mapping. The
network is presented with K randomly sampled training
vector-pairs of input- and output-space coordinates.

We formalize the neural network as an adaptive dy-
namical system whose temporal evolution is represented

by the following coupled differential equations

Uy + Ktn = Y Tam py(um) + *I (21)
m

where u,, represents the mean soma potential of the nth
neuron and T,,, denotes the synaptic coupling from the
mth to the nth neuron. The constant x characterizes the
decay of neuron activity. The sigmoidal function ¢, (-)
modulates the neural response, with gain given by 7; typ-
ically, p,(z) = tanh(y - z). Without loss of generality, v
can be set to unity in the sequel. The “source” term, kr
encodes component-contribution by the attractors of the
k-th training sample via the expression

kr, = { [kan = p(un)]ﬂ if n€ Sy USy (2.2)

0 if n € Sy

The specific attractor coordinates are given by

k k

a, = “z,

k — k
Gn = Un

if n € Sy
if n € Sy

for { ¥z, ¥ | k = 1, ---, K} taken from a training
set scaled to the range [—1,+1]. In [1,3,13,14] we have
shown that, for § = (2:+ 1)~ and : a strictly positive
integer, such attractors have infinite local stability and
provide opportunity for learning in real-time.

The neural network specified above constitutes a dis-
sipative nonlinear dynamical system, the flow of which
generally converges to a manifold of lower dimensionality
in the phase space. It is well known [5,7,13] that such
neuromorphic systems can store memory states or pat-
terns in terms of fixed points of the network dynamics,
such that initial configurations of neurons in some neigh-
borhood or basin of atiraction of that memory state will
be attracted to it. Of crucial importance is to know how
stable these attractors are, and, starting from an arbitrary
network configuration, how fast they can be reached. In
this vein, we exploit a novel concept in dynamical sys-
tems theory, i.e., the notion of terminal attractor , that
subsequently will enable us to formalize an efficient neu-
ral learning algorithm. The concept of terminal attrac-
tors in neural networks was initially introduced by Zak
[13] to obviate some of the above limitations in content-
addressable memories, and further extended by Barhen
et al. [1,2,3,6] and Zak [14] to computational learning. It
has also been shown that incorporation of terminal attrac-
tors in the neural dynamics can be used for elimination of
spurious states [13]. This property is critical in providing
an accurate generalization ability during the operational
phase of our proposed network. It will ensure that “inter-
polations” (or “extrapolations”) over the input domain of
¢ are not based on false attractors. In our neuromorphic
framework, terminal attractor dynamics then provides a
mechanism that can implicitly exploit the time-bounded
terminality of phase trajectories and their locally infinite

stability, thereby enabling an efficient and accurate solu-
tion to learning functional invariants.

;’;t. Energy Function and Network Stabil-
ny

Our basic operating assumption for the dynamical
system defined by (2.1) is that at equilibrium, i.e., as
u, — 0,forn = 1,---, N,

u, — Fiag(T). (3.1)
The superscript ~ will be used to denote quantities evalu-
ated at steady state. This yields the fixed point equations

kbi, =) Tam p(tim) + *I. (32)
m

Note that, in contradistinction to Hopfield [7], Pineda [11],
and others [8,9,12] ¥I,,, is a function of the state vari-
able u,, and does not represent a constant external input
bias to the network. It influences the system’s degree of
stability and provides a dynamically varying input mod-
ulation to the neuron, thereby enforcing convergence to
fixed points in finite time, without affecting the location
of existing static attractors. For an arbitrary synaptic
matrix T, the asymptotic attractor contribution I, dif-
fers from zero. The key objective of learning is then to
adaptively evolve the interconnection topology of the neu-
ral nelwork and determine the synaptic strengths, so that
the Sx — Sy mapping be accurately computed over
the training set, in terms of the specified attractors; i.e.,
YVek=1---, K, ¥, = 0 V n € Sx USy

To proceed formally with the development of a learn-
ing algorithm, we propose an approach based upon the
minimization of a constrained ”neuromorphic energy-like
function” E(T, A) given by the following expression

1 1
E(T,)) = 3 3N vam T + - DD IR M ¥+
n m k n
(3.3)
{0
0

(3.4)
Typically, positive values like % and 2 are used for a.
The weighting factor w,,, is constructed in such a fash-
ion as to favor locality of computation. The indices n, m
span over all neurons in the network. Lagrange multipli-
ers corresponding to the k — nth constraint are denoted
by ¥An. The proposed objective function includes contri-
butions from two sources. First, it enforces convergence
of every neuron in Sy and Sy to attractors corresponding
to the components in the input-output training samples,
thereby prompting the network to learn the underlying

invariances. Secondly, it regulates the topology of the
network by minimizing interconnection strengths between

where

ifn € SxUSy
ifn € Sy

krn = - ﬁf’(kﬁn)

distant synaptic elements to favor locality of computation.
Additional problem-specific constraints could also be in-
corporated in the neuromorphic energy function [2]. But,
in contradistinction to the traditional approaches, our
methodology incorporates them directly into the trained
(operational) network, as discussed in [1,3].

Lyapunov stability requires an energy-like function
to be monotonically decreasing in time. Since in our
model the internal dynamical parameters of interest are
the synaptic strengths Tj; of the interconnection topol-
ogy, the decay constants n:., the gain parameters 7; and
the Lagrange multlpllers k);, this implies that

ZZ T, Z
Za i ;Zgi,g'i.- < 0 (35)

One can always choose, with 7 > 0

: 9B
Ty = -m 5

T (3.6)

with similar expressions for k£ and ¥, where 7p introduces
an adaptive parameter for learning to be specified in the
sequel. Then, substituting in Eq. (3.5) and denoting by
@ tensor contraction, i.e., sum over all relevant indices,
one obtains

VE® A < rp VIE®VTE + 1o ViE®VE
+ 7, V,E®V,E (3.7)

Without loss of generality, one can assume 7 = 74 =
7« = T7,. The equations of motion for the Lagrange

multipliers '\; must now be constructed in such a way
that Eq. (3.7) be strictly satisfied. In addition, when

the constraints are satisfied, i.e., T, =0, we require that
'\; — 0. We have adopted the following analytical model

for the evolution of A,
, 11

A+ /(A + 0)
where Il = Ve E®VrE + V@V, E + V,E®V,FE and

A = ViE®VyEand 0 < 0 < 1. It is straightforward
to prove that this model fulfills the above requirements.

4. Adapt
Operator

';\.‘ '[V)‘E],' (3.8)

tive Learning using Adjoint
heory

We now focus on the derivation of an algorithm for
computing Vo E and V,E. An adiabatic framework is
assumed. On differentiating Eqs. (3.3) with respect to

Tij we get
OE LT ky kpa-tkp 4 ko
aT; wij Tij Xk: ; An TR ©Pn aT;; iy,

where ¥, denotes the derivative of the neural response.
The computation of V E thus requires that N algebraic
equations be solved for each parameter Tj;, that is N3
equations at each iteration step. Similar requirements ex-
ist for evaluating VF and V. E, since one must obtain
the values of %{‘-_l and ‘%‘%ﬂ respectively. It is possible,
however, to drastically reduce this computational com-

plexity by introducing algorithms based on Adjoint Op-
erator theory [4]. Specifically, let

P = {Tu, - Inn|&i, 6N 7,8 |-} (4.2)
denote the set of relevant parameters, i.e., E = E(i,p).
Also, let B

f(3,p) = 0 (4.3)

represent the nonlinear system equations. For notational
simplicity we will omit the k—dependence. Then

dE oE 0E Ju
-— = = 4 e 4.4
dp,, 6pp du 6}?“ ()

Since E is given analytically [3.3], the computation of gg

and & au is straightforward. To obtain ap" [eg, —"- in
Eq. (4.1)] we differentiate the state equations :

of oa _ _of
% %, ~ bp, (4.5)

Denoting the NXN matrix g{]: by A, the vector ;%ﬂ- of

- »
unknowns by #Z and the “source” vector —0f/dp, by #5,
we can write
Atz = ¥;5

As mentioned above, such a system of equations must
be solved for each parameter p, since the source term
explicitly depends on p.

Now, let A* denote the formal adjoint of the operator
A. Then by definition

At bzt = Hp (4.7)
and
A (A u;) = Hz® bz
= Mz . (A‘ 4‘2‘)
= kg . K (4.8)
Recalling that
dE OE OFE
2 = el bl
de = Bpa + 35 z (4.9)
and that
Hg* HE = Hz*.H§ (4.10)

we can identify

oE

ou
Thus, the source term of the adjoint equations is indepen-
dent of u. Hence, the solution of a single set of adjoint
equations will provide all the information required to com-
pute the gradient of E with respect to all parameters. To
underscore that fact we shall denote z* as v , to obtain

dE oFE
— = — 4+ v-*s 4.12
dp, Op, ()

4

(4.11)

In the above expression, the matrix A is defined as

EAni = i 6ni — T o (4.13)
where
by, = {m+5lak —e(*@n)] 7 *pn i n € Sx USy
" K ifﬂ € SH
(4.14)

The adjoint equations are then simply,

%+ movo= [) Tmivm + ENTETN] (4.15)
m

In our previous work [1,3], the computation of g%g- in
(4.1), was based on a variant of the relaxation proce-
dure suggested by Pineda [11]. The equilibrium points
E3; (obtained when, v; — 0) are then used in the com-
putation of Vo E in Eqs. (4.12). The neural learning
equations can thus be expressed as

Ty = 7w T —) o o(*d))] (4.16)
k

So far the adaptive learning rate, i.e., 7 in Eq. (3.6), has
not been specified. The implications of its selection on the
convergence of dynamical systems, have been discussed in
our previous work [1,3,13]. We seek 7 in the form

T « |VE|™? (4.17)
where VE denotes the vector with components
VrE, ViE, V,E and V,E. We have also shown that
dynamical system, e.g., f; |VE| = —x|VE|'"? suf-
fers a qualitative change for # > 0 : it loses uniqueness
of solution. The equilibrium point | VE | = 0 becomes

a singular solution being intersected by all the transients,
and the Lipschitz condition is violated. By analogy with
our previous results [1,3,13,14] we choose § = 2/3, which
yields

T = (ZZ[VTE],’;,,. + 3 (VB +
ST (v4E)} + ZZ"[V,\E]?)_S(‘LIB)
i ko

Neural learning methodologies based on dynamical
systems must consider the fundamental problem of net-
work stability as synaptic weights evolve during training.
Previously published approaches [1,8,10,11] ignored the
issue. To make some progress, we observe that if each
node of the activation network had an associated terminal
attractor , the resulting neurodynamics would be uncon-
ditionally stable. However, since by definition of a map-
ping, data are provided only for neurons in the input and
output topographic partitions, “virtual” attractors must
be determined for the hidden units. These attractors are
virtual since they correspond to a current estimate of the
synaptic connectivity matrix. Specifically, Eq. (2.2) has
to be modified to read

if n€ Sy USy

b = [[an — p(un) I
" if ne Sy

[kzn — p(un)]ﬂ
(4.19)

where the virtual attractor coordinates z, are obtained
by considering the fixed point equations (3.2), as adap-
tive conservation equations which utilize the extra degrees
of freedom made available by the hidden neurons in Sy.
Thus, if we define

n o= Y Tuelta)

IESxUSy

(4.20)

we can compute the virtual attractors (in the terminal
attractor formalism) from

z-n = _[ann - Z Tnm V’(zm) -t ["{"]I/S (4'20)
meSy

Note that the above expression also involves terminal at-
tractor dynamics.

5. Operational Network

The activation dynamics of the operational network
can be used to directly encode application-specific as well
as event-driven constraints. This is a significant departure
from the existing neuromorphic models for constraint sat-
isfaction. Two modes for constraint handling had hitherto
been adopted [1]: generate the training samples in confor-
mity to a prespecified criterion, or incorporate them into
the neuromorphic objective function given by Eqn. (3.3)
[2]. Both these approaches are restrictive and computa-
tionally inefficient. Since the operational scenario needs
to be known “a priori”, they skew network behavior. A
neural network so trained learns only limited (presented)
aspects of the nonlinear functional invariant. Each addi-
tional constraint requires retraining the network, thereby
severely limiting real-time performance.

In this perspective, we propose an “a posteriori”
regularization methodology that precludes modification
of the synaptic configuration. Our methodology entails
adding constraint information into the dynamics of the

trained network along concept lines inspired by “renor-
malization theory”, a methodology widely used in physics.
The activation dynamics in the operational mode then
takes the following form:

Un+Kp Uy = anm‘Pw(“m)+In+ZrAn[Vﬂgr(Pn'_‘)]
" ’ (5.1)

where W,,,, denotes the learned interconnection matrix,
and the “working” input source I, is now defined as,
L = { [tn — @(un)]"* ifn € Sx
0 ifn € SyUSy
(5.2)
The constraints g,(-) relate to application-specific con-
siderations, while p, denote constraint-specific renormal-
ization parameters which scale the neuron activities, con-
structed so that the gradient contribution to the dynamics
vanishes whenever the actual constraint is satisfied. An il-
lustrative example on deriving analytical expressions and
the concomitant renormalization parameter, in the con-
text of learning nonlinear mappings for robotic control, is
presented in [1].

6. Simulation Results

The computational framework developed in the pre-
ceding section has been applied to a number of problems,
including signal reconstruction [6] and robotics, e.g., in-
verse kinematics of redundant manipulators [1,2], that in-
volve learning nonlinear mappings. In the sequel we dis-
cuss only one of our experiments which involved learn-
ing a continuous clipping nonlinearity. This function has
been extensively benchmarked [9], and provides an ade-
quate basis for illustrating the computation efficacy of our
proposed formulation as compared to the existing neural
learning algorithms. The test setup included a fully con-
nected network with one neuron in the input and output
sets respectively, and two hidden neurons. The training
set consisted of 12 training samples.

Since our learning methodology involves singular so-
lutions of highly coupled, continuous dynamical systems,
extreme caution must be exercised when simulating the
algorithms in a digital computing environment. For exam-
ple, explicit methods such as Euler or Runge-Kutta can-
not be used, since the presence of singularities induces ex-
treme stiffness. Practically this would require an integra-
tion time-step of infinitesimal size, resulting in numerical
round-off errors of unacceptable magnitude. Clearly, fully
implicit integration techniques have to be used [3]. For the
simulations reported below, Eqs (2.1. and 2.3.11) are inte-
grated using a fourth-order Kaps-Rentrop scheme. Figure
1(a) shows the LMS error during the training phase. The
worst-case convergence of the output state neuron to the
presented attractor is displayed in Fig. 1(b). Note that
the system learns the nonlinear map orders of magni-
tude faster than by the back-propagation algorithm (0.2
secs vs 5000 secs effective time). The network yielded an

interpolation/recall precision with error under 0.3% for
80% of the test samples. The worst-case error detected
was 3.5%. In contrast, a multi-layered perceptron net-
work (configuration defined in [9]) and trained using the
backpropagation algorithm required 5000 seconds effec-
tive time to achieve a worst-case error of 6%.

0.5
g 04t
w
2
s 034
o
w
§ o2f
e -
3
B o1f
s
0.0 ; : :]
0.1 0.2 0.3 0.4 0.5
Effective time (secs)
Figure 1(a) Profile of the least-mean-square
(LMS) error during the learning phase
0.5
> 0.41
L]
o g
5 0.3 ?-convergence
°
2
€ 0.2
g -£-convergence
>
S 0.1 ’
Q
0.0 " ' - -
0.1 0.2 0.3 0.4 0.5
Effective time (secs)

Figure 1(b) Worst case convergence of the input
and output state topographic partitions to the
presented attractors

7. Conclusions

In this paper we have presented a new theoretical
framework for learning continuous nonlinear mappings us-
ing artificial neural networks. Central to our approach
are the concepts of terminal attractors - a new class of
mathematical constructs which provide unique informa-
tion processing capabilities to the artificial neural sys-
tem and adjoint operator theory which enables an efficient
computation of energy function gradients. The rapid net-
work convergence resulting from the infinite local stabil-
ity of terminal attractors enables the development of very

fast neural learning algorithms, an essential requirement
for applications in adaptive signal processing and robotic
control. Our methodology is implemented on topograph-
ically partitioned, but densely connected networks, to fa-
cilitate the encoding of training samples as terminal at-
tractors. In a significant departure from prior neuromor-
phic formulations, we completely decouple the incorpo-
ration of applicational or event-driven constraints from
the network learning phase by introducing a renormal-
ization mechanism. Thus, initially the network is trained
using pairs arbitrarily sampled over the entire function do-
main. Then, during run-time, the desired constraints are
included in the dynamics such that network convergence
necessarily ensures constraint satisfaction. Notice that
this method requires no additional training. Finally, by
introducing virtual terminal attractors we guarantee the
unconditional stability of the activation dynamics during
learning.

Acknowledgements

The research described in this paper was performed
at the Jet Propulsion Laboratory, California Institute of
Technology. Support for the work came from agencies of
the U.S. Department of Defense, including the Innovative
Science and Technology Office of the Strategic Defense
Initiative Organization. We wish to acknowledge fruitful
discussions with M. Zak and F. Pineda.

References

[1] J. Barhen, S. Gulati and M. Zak, “Neural Learning
of Constrained Nonlinear Transformations”, IEEE
Computer, 22(6), 1989, pp. 67-76.

[2] J. Barhen and S. Gulati, “Self-Organizing Neural Ar-
chitecture for Inverse Kinematics of Redundant Ma-
nipulators”, NATO ASI, F44, 1989 (in press).

[3] J. Barhen, M. Zak and S. Gulati, ” Fast Neu-
ral Learning Algorithms Using Networks with Non-
Lipschitzian Dynamics”, in Proc. Neuro-Nimes '89 ,
Nimes, France, Nov. 13-16, 1989 (in press).

[4] J. Barhen et al., “The Application of Adjoint sensitiv-
ity Theory to a Liquid Fuels Supply Model”, Energy,
9(3), 1984, 239-253.

[5] S. Grossberg and M. Kuperstein, “Neural Dynamics
of Adaptive Sensory-Motor Control”, North Holland,
2nd Edition, 1989.

[6] S. Gulati and J. Barhen, “Predictive Learning Algo-
rithms for Multidimensional Signal Reconstruction”,
in Third Annual Parallel Processing Symposium, at
Fullerton, CA, March 29-31, 1989.

[7] 3.J. Hopfield “Neurons with Graded Response have
Collective Computational Properties Like Those of
Two-State Neurons,” Proc. of Nat’l Academy of Sci-
ences, 81, 1984, 3058-3092.

[8] A. Lapedes and R. Farber, “A Self-Optimizing, Non-
symmetrical Neural Net for Content Addressable

Memory and Pattern Recognition”, Physica D, 22,
1987, 247-259.

[9] R.P. Lippmann and P. Beckman, “Adaptive Neu-
ral Net Preprocessing for Signal Detection in Non-
Gaussian Noise”, D.S. Touretzky, editor, Neural In-
formation Processing Systems, New York, 1988, pp.
124-132.

[10] B.A. Pearlmutter, “Learning State Space Trajecto-
ries in Recurrent Neural Networks: A Preliminary
Report”, Tech. Rep. AIP-54, Pittsburgh: Carnegie
Mellon University, Dept. of Computer Science, 1988.

[11] F.J. Pineda, “Dynamics and Architecture in Neural
Computation” Journal of Complezity, 4, 1988, 216-
245.

[12] R.J. Williams and D. Zipser, “A Learning Algorithm
for Continually Running Fully Recurrent Neural Net-
works”, Neural Computation, 1, Spring 1989.

[13] M. Zak, “Terminal Attractors for Addressable Mem-
ory in Neural Networks,” Physics Letters A, 133,
1988, pp. 218-222.

[14] M. Zak, “The Least Constraint Principle for Learning
in Neurodynamics”, Physics Letters A, 135, 1989, 25-
28.

ASYNCHRONOUS NONLINEAR HOLONOMIC SIMULATION:
METHODOLOGIES IN MODELING INTERNATIONAL RELATIONS

Elizabeth K. Newton

Department of Political Science
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

We present a radical re-conceptualization of the cog-
nitive processes (information processing and learning)
performed by social systems. Using artificial neural net-
work theories, the focus of international relations theory
switches from the power and attributes of actors, to pro-
cess and connection between actors. The new model
thereby provides a new methodology for understanding
learning in collectives and the role of knowledge and
information flow in cooperative endeavors. Major ad-
vantages to this new approach also lie in the clarifica-
tion of collective learning, not just qualitatively, but,
quantitatively as well, with the newly enabled use of
whole classes of mathematical tools such as statistics,
thermodynamics, constrained optimization theory, and
nonlinear dynamics. The proposed neural model proves
compatible with other accounts of international coop-
eration, yet goes beyond previous economic and cyber-
netic models by actually accounting for ”concurrently
asynchronous” collective processing.

1. INTRODUCTION

Politics, like all techniques of making
and implementing decisions, is not an end in
itself...politics in the world today is an es-
sential instrument of social learning....a pro-
cess of awakening [1].

In his far-seeing work, Karl Deutsch grasped the im-
portance of "learning” and information flow as a means
for fostering peaceful interaction, stability and cohesion
of national governments, states, and people. In interna-
tional relations theory, ”learning” comprises one of the
most tantalizing and, at the same time, frustrating con-
cepts: Can states learn in order to cooperate and main-
tain peace, and if so, how? In a human being, individual

learning occurs at several levels, from the biochemical
adjustment of neuronal synapses, to the development of
neural reflex arcs, to complex and abstract philosophical
realizations. But can the same concepts of learning be
applied at even higher levels, to those of collective social
organizations, states, and regimes?

150-040

Phillip Alvelda

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109

2. REGIME THEORY

Before delving into new analogies and methodolo-
gies, however, the definition of international regimes and
their place in international relations theory is warranted.
A regime regulates or influences states or international
actors’ behavior for the pursuit of some common goal.
For example, regimes have developed to address prob-
lems such as uncertainty in international financial mar-
kets, use of the seas, and barriers to free trade. Inter-
national regimes have been variably described as norms,
principles, or rules and procedures held collectively for
the purpose of addressing problems in specific issue ar-
eas. Often regimes are envisaged as actual entities, mul-
tilateral agreements, or institutions, although this is not
necessarily the case: it is merely conceptually easier to
consider them in this formalistic way. So, a regime is a
problem-solving effort resting on a consensus of knowlk
edge among the actors, which evolves in response to
changing national needs as conditioned by ideology and
consentual knowledge.

In light of regimes’ problem-solving nature, naturally
the question arises as to how regimes handle or store in-
formation and learn. Most generally, learning entails
the acquisition of knowledge. In a regime, learning is
held to constitute the convergence of actors’ knowledge
which serves as a guide to policy. Learning then is an
evolutionary process motored by successive experiments
on the part of the actors. For the collective learning pro-
cess to occur, there must be some sort of institutional

memory which enables the remembrance of particular
parameters and already-attempted solutions. Therefore
collective memory (as distinct from individual memory)
must be defined. Additionally, a mechanism for learning
must be specified. How do collectives arrive at corre-
lations between the past and desired future outcomes?
And finally, indicators of the process must be available,
preferably ones which do not depend solely on empirical
observation of performance, but rather are derived from
the process itself.

3. PREVIOUS MODELS

Problems abound when ”learning” is used to de-
scribe the behavior of collectives without sufficient jus-
tification or theoretical self-consciousness. One of the
reasons that political theorists have had so much trou-
ble achieving useful, repeatable results is because the
computational and cybernetic models of cognitive sys-

tems on which they base their work, utilizes a type of
information processing and memory that inherently lim-
its their computational modeling capability.

A typical example can be found in the decision-
making and collective behavior theories which use linear
algebraic or differential equations. Such models can only
incorporate a small number of linear variables and there-
fore model more complex systems rather poorly. The
system dynamics are described by several linear equa-
tions, as opposed to the coupled non-linear differential
equations, that are absolutely necessary to model non-
linear phenomena. Most current political system models
cannot begin to approximate the numerical complexi-
ties of nonlinear reality; with any number of nonlinear
terms, the generalization from linearized approximation
analysis to actual nonlinear system behavior is typically
invalid [4]. Linear system models cannot exhibit the
behavioral complexities that exist in even fairly simple
nonlinear systems; characteristics such as extreme sen-
sitivity to initial conditions behavioral bifurcation, and
deterministic chaos are typical only in nonlinear sys-
tems. With the simplified linear models of nonlinear
systems as a rather weak foundation, theories that use
descriptions of learning in order to explain system evo-

lution typically resort to incomplete or static black-box
definitions.

For reasons such as these, older social system models
cannot reliably emulate realistically complex, coupled
systems that involve the processing of large amounts
of data under uncertain conditions. These models all
mistakenly neglect the effect of distributed memory, and
assume that collectives arrive at conclusions in much the
same way as one individual performing a single task.

The proposed neural network methodology can de-
scribe ’social’ collective behavior, taking into account
the non-linear functional characteristics of both individ-
uals and the previously unrealized importance of their
interactions, as well as 'noisy’ or inadequate informa-
tion flows. Such highly parallel, nonlinear computa-
tional systems mimic much more closely the cognitive
processes of social collectives and regimes, and provide
rigorous mathematical methods for modeling collective
social learning.

4. NEW ANALOGIES

Collective problem-solving, is comprised of many in-
dividuals working toward a solution at the same time,
providing, as one would hope, a net result greater than
the sum of its parts. People function in a decidedly
nonlinear fashion, basing their decisions on a plethora
of visual, aural, and tactile sensory information. The
particular information sources that a person selects for
decision formulation purposes, directly influences the
amount, quality, and bias of that received information
(i.e. which opinionated lobby group gets to a politi-
cian first can have marked influence on voting behavior).
Stored information that governs social system behavior
is embedded not only in the characteristics of an individ-
ual actor, but also in the pattern, quantity, and quality
of his interactions and relations with others.

Each must handle large quantities of information
and attempt correlations in order to achieve appropri-
ate outcomes. On a smaller scale, parallels can be
drawn between the units which compose both regimes
and neural networks. States, or international actors
are held together, much as neurons are, by an orga-
nizing, hierarchical principle. Regimes bring individual
units together to operate upon a task; so, like neurons,
states may be considered processors, albeit fairly com-
plex ones, which work in parallel on a particular task
defined by the regime. The analogy can easily be ex-
tended to note that complex state-neurons can also be
modelled by sub-networks like those unifying different
governmental bureaucracies, local offices, people, etc.
Social paths of information are the equivalents of neural
interconnections which may vary in importance or influ-
ence (weight), number (depending on the number and
topology of units). Information is stored collectively in
the communication between units, and collective com-
putation is performed on the basis of this distributed
information.

Regime components also have their representation
in neural networks. First of all, the norms on which
the regime rests may be considered analogous to the de-
sired outcomes presented to the network. The norms
of a regime tend to be articulations of overlapping "na-
tional interests.” Similarly, the regime’s rules and pro-
cedures correspond to limitations on the network’s in-
terconnection weights and patterns since they dictate
the constraints to available solution configurations nec-
essary to achieve intended outcomes. Rules are required
to prevent 'jamming’ and to prioritize the arrangement
of channels that states use to communicate with each
other.

In addition to general information storage and han-
dling similarities, learning in regimes involves changes
in knowledge such that the difference between the de-
sired end and the actual outcome are reduced. That is,
learning occurs with changing connectivity (amount and
accuracy of information flow, i.e. level and flavour of ne-
gotiations) between states. When the difference between
actual outcome and the desired end is great, then the
institution re-attempts a solution, altering as needed the
way in which, and from whom, it aggregates and pro-
cesses its knowledge. This error minimization process is
not dependent on the ability of any one unit to perform
better or worse; it relies on the regime’s collective capac-
ity to manipulate, coordinate and apply global activity.
The learning and adaptation process is on- going and
can result in widely varies system behavior: from glob-
ally stable systems to systems with many locally stable
points, to systems that oscillate in limit cycles, to sys-
tems that evolve chaotically. Overall, this range of pos-
sible descriptions fits nicely with observed regime evolu-
tion. Learning is then seen as the linking and delinking
of issues is a continuously evolving dynamical trial and
error processes. Fundamentally, negotiation or linkage,
as a consequence of feedback, characterizes regime pro-
cesses.

The behavior of more simple static networks (i.e.
Backwards Error Propagation [7]) that lack high plas-
ticity, that is, an ability to adapt to or integrate new,
unexpected inputs after a training cycle has been com-
pleted, exhibit the same behavior in regimes that are

labeled "lags.” A regime is unable to immediately alter
its connectivity to change its solution, whether due to
habit, uncertainty, or cognitive failing (inability to per-
ceive alternative solutions). At root, this quality stems
from the networks’ lack of a dynamic control structure.
Established actors in a given regime would have regu-
lar official and social contacts with whom they inter-
act in order to most efficiently (in the case of the ideal
politician) accomplish their inter-regime tasks. When an
entirely new environmental input becomes significantly
relevant, new channels, advisors, funding sources, etc...
must be found and integrated to sufficiently support new
tasks and duties. So, while slight changes in the environ-
ment can be handled by generalizations from previous
solutions, abrupt large-scale changes require a modifi-
able or dynamic network hierarchy.

Additionally, the neural model does not even pre-
sume or require the rationality of the individual policy-
maker for the proper function of a regime as a whole.
If one unit processes poorly(i.e. a single policy maker
is not very good at his job), information can be redis-
tributed by the network so that a different solution is
achieved. Regimes can learn even though certain indi-
viduals composing it may be inefficient, incompetent, or

absent. This is because a large number of individual
elements contribute to any single global result. Small
changes in the input, or even deletions of individual el-
ements of a network, produce very little change in the
global output. In this way, the network is very fault-
tolerant.

One criticism levelled by Strange [8] is that regime
theory is narrowly rooted in state-centric analysis. Yet
neural network modularity characteristics permit the
unit level of analysis to vary from that of individuals
through larger and larger associations such as states, na-
tions, and multi-nationals like NATO. The networks are
modular in the sense that large super-networks can be
constructed from densely interconnected sub-networks.
In this way large hierarchical systems with different
scales of complexity and data availability can be easily
simulated at different levels of analysis.

Strange [8] also articulated that current regime the-
ory suffers from an overemphasis of the static, concrete
elements. Because 'regime’ implies order, analyses show
a bias toward the status quo and unchanging procedures.
Regimes, however, are dynamic and evolve over time,
sometimes with great discontinuities. Factors contribut-
ing to change, like new information and changing inter-
pretations of ”"national interest” are often overlooked.
But, the neural network model accounts for chahges
within regime hierarchies(changing interconnectivities,
or rules and procedures) as well as changes to individ-
ual regime actors themselves (the incorporation of new
actors, death of old ones), and error-functional adapta-
tion, (or the change in norms or goals in an autonomous
regime).

In contrast to older regime models, the more complex
neural theories use dynamical system models consisting
of coupled differential equations. In other words, with-
out artificial constructs, they can evolve in time just as
the real-world systems they model with a complete range
of possible system behaviors from stability to chaos. A
typical example is a fully connected, additive-type neu-

ral system (e.g. a Hopfield model) defined by the fol-
lowing system of coupled differential equations:

W+ awi = Y Tgi(ryy) + L (4.1)
i

Here u; represents the internal state of the i—th neuron,
Ti; denotes the synaptic coupling from the j—th to the
i — th neuron and I; is the external input bias. The
sigmoidal function g; modulates the neural response, %
denotes the transfer function gain for the j—th neuron
and a; represents the inverse of a characterisitic time
constant or the decay scaling term. Euler’s approxima-
tion to the above system of continuous-time equations

W= (uft —uf) / A

where A denotes the discretization stepsize, defines the
Hopfield operator

wi(d) = u + A[—a.-u.- + ZT‘j gi(viuj) + Ia]
' (4.2)

How does one describe this neural model’s operation
in real-life terms? Imagine a regime made up of many
representatives of separate states, each in communica-
tion with the others. Their task demands that they
work together, to generate optimal formulas for achiev-
ing the desired end. The number of inputs that each
individual must consider is enormous. They include
domestic public opinion, budget constraints, memories
of past performances, goals external to the immediate
task at hand, personal values, diplomatic, social and
cultural constraints, each of which can also introduce
further complexity in terms of performance evaluation
feedback. Whether or not the network succeeds depends
on the group’s ability to synthesize the inputs, com-
municate the decisions (outputs) to others, and build
a coalition agreeing on a particular collective path to
achieve a goal. Choices of the proper channels depends
on the realization of specific interrelationships between
past, present, and future experiences, as well as the his-
tory and projected future relations between individual
and group capabilities.

5. AN ASYNCHRONOUS
NEURAL FORMALISM

A neural network model of an existing regime is in
progress (Alvelda and Newton [10]) in which a large
number of environmental inputs are presented to the
network, so the model is not intrinsically biased in its
range of possible solutions. The weights that evolve
in the various interconnections are examined to discern
which actors might be most vital to the achievement of
particular outcomes and how they are coupled. In other
words the network is allowed to evolve under charac-
teristic internal dynamics in order to develop its own
internal representation of the critical invariant proper-
ties necessary to accomplish specified regime functions.
Analysis of these emergent properties promises to re-
veal factors particularly pertinent to policy development
and decision-making, and provide a model that is closely
analogous to the functional methodologies of existing so-
cial systems and regimes.

The model is based upon a mathematical formalism
from Barhen and Gulati [9], a new neural algorithm that
incorporates a system of closely coupled nonlinear differ-
ential equations that can simulate a distributed system
which evolves in a ”concurrently asynchronous” fashion.

We now briefly summarize some key attributes of
concurrently asynchronous neural computation [9] to

highlight the divergence of older social system models
from actual regime behavior. Concurrent tasks are ac-
complished most efficiently by a collection of function-
ally cooperating processes with no explicit time inter-
dependencies that require local waiting for the purpose
of swapping partially computed results. Computation is
then essentially iterative in nature, with system dynam-
ics controlled by asynchronously updated state variables
and previous time history.

This asynchronous methodology provides an effec-
tive tool for designing system models capable of deliver-
ing high throughput since synchronization and coordi-
nation restrictions are eliminated. Computations can be
carried out without adherence to precedence constraints,
allowing each individual processor to operate at its own
best speed on available (albeit incomplete) data. In a
neural network implementation, a neuron would be al-
lowed to fire without having to wait for output signals
from all the other neurons to which it is connected.

Asynchronous dynamics also imply a new type of
local fault tolerance. Individual neurons can remain
idle for finite periods without significantly altering the
global computation. This is closely analogous to the
"refractory” or recharging periods observed in biologi-
cal neurons. In terms of system simulation, the elimi-
nation of time-constrained inter-neuron dependence, al-
lows immediate information rerouting around failed net-
work segments and the continuation of processing with-
out global reconfiguration. Another advantage is the
potential for simulation of heterogeneous collective en-
sembles (i.e. systems in which different processing nodes
have different performance characteristics) in order to
achieve hierarchical neuronal processing.

Concurrently asynchronous updating can be de-
scribed as follows: at some operating instant t, an idle
neuron, i, initiates the update of its state to

u = pi(ay)

using state information already available from the pre-
vious updates, without waiting to receive the results of
still ongoing activations, where @} is the ith component
of the Hopfield operator defined in (4.2). The precise
strategy for selecting available state information would
depend on the degree of synchrony and external control
in the system being modeled.

Typical behavior for this type of network with asyn-
chronous feedback was found to be deterministic chaos
[9]. Useful behavior, on the other hand, is typified by
the uniform contraction in phase space of independent
neurons in convergence toward a single global solution.
It is not until constraints were placed upon the parame-
ters and control structure of the network that sufficient
conditions exist for the network to converge to a so-
lutions notwithstanding the bounded time delays and

10

inefficiencies of the system. In summary, concurrently
asynchronous dynamics implicitly define attributes that
are essential for accurate neurocomputational modeling
and simulation of social, political, and economic sys-
tems.

6. DISCUSSION

Given the similarities of regimes and neural net-
works, several conclusions can be drawn from these new
connectionist cognitive models to describe the opera-
tion and evolution of social systems and international
regimes.

Obviously, change occurs when there is a large in-
flux of new knowledge (environmental change or a sub-
stantial alteration to the general fabric which com-
prises the network as a whole). New information, co-
operation and/or support, can enable new solutions to
old problems confronting states. But learning also oc-
curs between cataclysmic environmental changes. Peo-
ple(neurons) continuously adjust the way and with
whom they interact in an effort to improve performance.
When feedback information indicates that global per-
formance is high, the magnitude of adaptation is small.
When catastrophic change impinges upon the collective,
large scale changes and reorganizations must occur be-
fore the regime can once more operate effectively. The
system learns continuously.

Whether or not a distributed system can eventually
learn to solve a given problem depends on many factors
in addition to the net resources of all the individual com-
ponents. The way in which those individuals are man-
aged must take into account the characteristic dynam-
ical properties of: individuals, the interactions between
them, processing and communication inefficiencies, and
task decomposition methodologies. External constraints
must be imposed to gaurantee constructive collective
function in spite of inherhent uncertainty, asynchrony
and individual failures.

Since knowledge is diffused throughout the network,
the model also explains how actors come to integrate
knowledge into a coherent whole and understand inter-
relationships and preserve it over time even though in-
dividual careers end and replacements are initially un-
trained and may ultimately function very differently. In
this way the model emphasizes the importance of knowl-
edge and cognitive change in collective negotiation and
the emergence of relational cooperation.

While neural regimes seem to elucidate what could
be called social learning, the model also points to rea-
sons that might explain the collapse of regimes. When a
regime lacks sufficient external connectivity (the quality
and quantity of environmental information) and topo-
logical complexity (scale, variety, and complexity of
interrelation and information processing capabilities),
then its tendency to fail in a given task will be all the
greater since it cannot sufficiently model or even approx-
imate a solution. In regimes with many actors, informa-
tion dysfunctions and failures in individual units then
become less important than the quality of communica-
tion between them. This finding echoes one of Deutsch’s
[3] perceptions from 25 years earlier when he argued that
self-closure (insufficient input) poses a major threat to
the continuation of political organizations.

Ultimately, neural network theories provide wonder-

fully rich models for describing the functioning of inter-
national regimes. The model substantiates the idea of
higher order, collective cognition. International mem-
ory resides in inter-state relations. Regimes can learn,
provided their components associate with one another
in an interdependent manner.

(1]

(2]

(3]
4]

5]

(6]

Y]

(8]

(9]

[10)

References

G.M. Baudet, ”"Asynchronous Iterative Methods for
Multiprocessors,” Journal of ACM, Vol. 25(2), pp.
226-244, 1978.

D. Chazan and W. Miranker, ”Chaotic Relaxations,”
Linear Algebra and its Applications , Vol. 2, pp. 199-
222, 1969.

K. Deutsch, The Nerves of Government, NY: Free
Press, 1963.

Guckenheimer and Holmes, Nonlinear Oscillations,
Dynamics, and Bifurcations of Vector Fields

[Springer Verlag, New York, 1983]

H.T. Kung, ”"Synchronized and Asynchronized Par-
allel Algorithms for Multiprocessors,” Algorithms
and Complexity: New Directions and Results, J1.F.

Traub, Ed. , Academic Press, New York, pp. 428-464,
1976.

C.M. Marcus and R.M. Westervelt,” Stability of Ana-
log Neural Networks with Delay,” Physical Review A ,
(in press).

D. E. Rumelhart and J. McClelland, Parallel
Distributed Processing: Explorations in the
Microstructure of Cognition, : Vol. 1: Foundations,
Cambridge: MIT Press, 1986.

Strange, Susan. ”Caves! Hic Dragones: A Critique of
Regime Analysis,” International Organization, 41(4),
Autumn 1987.

J. Barhen and S. Gulati, "Chaotic Relaxation in Con-
currently Asynchronous Neurodynamics,” (submitted
to Proc. of 1989 Int’l Joint Conf. Nedral Networks at

Washington, D.C.).

P. Alvelda and E. Newton, "Event Driven Asyn-
chronous Political Simulation,” (in preparation).

11

_ DNA: A New ASOCS Model
With Improved Implementation Potential

George L. Rudolph and Tony R. Martinez
Department of Computer Science
Brigham Young University
Provo, Utah 84602

Abstract. A new class of high-speed, self-adaptive, massively parallel
computing models called ASOCS (Adaptive Self-Organizing Concurrent
Systems) has been proposed. Current analysis suggests that there may
be problems implementing ASOCS models in VLSI using the
hierarchical network structures originally proposed. The problems are
not inherent in the models, but rather in the technology used to
implement them. This has led to the development of a new ASOCS
model called DNA (Discriminant-Node ASOCS) that does not depend
on a hierarchical node structure for success. Three areas of the DNA
model are briefly discussed in this paper: DNA's flexible nodes, how
DNA overcomes problems other models have allocating unused nodes,
and how DNA operates during processing and learning.

Introduction. A new class of high-speed, massively parallel,
adaptive computational models called ASOCS (Adaptive Self-
Organizing Concurrent System) has been proposed [3]. These present
neural networks with fast, well-bounded learning algorithms using
simple, asynchronous digital nodes [4] - [7]. One area of current
ASOCS research focusses on building VLSI implementations of
ASOCS using current technology. Chang and Vidal describe one
possible implementation of an ASOCS model in [1]. More recent
analysis of ASOCS shows that current ASOCS models may make
inefficient use of limited network resources. This is not due to a

problem inherent in the models, but in VLSI implementation. This paper '
introduces a new ASOCS model, called DNA (Discriminant-Node .

ASOCS), that is designed to overcome these inefficiencies. Some basic
ASOCS terms are defined, and ideas briefly discussed. An example of
how ASOCS models learn is presented, leading into a discussion of the
problems of inefficient use of nodes in a hierarchical implementation of
a network. The section following that discusses how DNA overcomes
these problems. The paper concludes with a brief summary of DNA's
advantages and limitations, possible applications for DNA and finally,
the direction of current research.

Definitions and Ideas. An ASOCS network can be viewed as a
function machine that can compute a mapping of arbitrary Boolean
inputs to arbitrary Boolean outputs. A network is composed of
computing nodes that operate asynchronously and in parallel. ASOCS
networks have two modes of operation--processing and learning.
During processing, the network acts like a parallel hardware circuit.
During learning, nodes may change the functions they compute, or be
deleted from the network altogether, as new information is presented.
The network adapts itself so that the overall function it computes is
consistent with the information it has received. The network learns
incrementally, using rules that express a particular functional
mapping. A given mapping or rule is known as an instance. The
following are examples of instances:

AB'C->Z ACD->Z' ED' ->Y'

The variables on the left side of the arrow represent the inputs, and
those on the right side the desired outputs for those inputs. Instances
may specify high or low outputs for one or more output variables. An
instance has positive polarity for a given output variable if it specifies
that variable to be high, and negative polarity for that output variable
if the variable is specified to be low. Nodes that specify opposite
polarities for the same output variable are called discordant instances.
In the examples above, AB' -> Z is positive for Z, while ACD -> Z' is
negative for Z. These instances are also discordant instances. ED' -> Y
is positive for X. It is not discordant with either of the other two
instances because the specified outputs are different variables. For
simplicity, the instances presented in the discussion will be limited to a
single output variable (i.e. all outputs will be Z or Z' only).
Implementing multiple outputs is an easy extension of the ideas
presented here [3], but will not be addressed.

150-049

12

The collection of instances presented to the network is the instance
set. The instance set is not stored explicitly in most models. Rather,
the network will store some internal representation that allows it to
execute the same function as the particular instance set it has been given.
It has been shown that the number of instance sets that potentially
represent the same functional information is infinite, and that therefore
instance sets are not unique [3]. Furthermore, internal representations
for the same instance set are diferent for different models. A network is
said to fulfill a given instance set when the function it computes
matches that specified by tthat instance set. Conflicts occur when a set
of inputs could cause the network to output both high and low for some
variable at the same time. The network resolves conflicts (is made
consistent) by adding new nodes and variables to the network or
deleting old conflicting ones. Precedence is given to the most recent
instance presented to the network which is referred to as the new
instance (NI).

Whenever a NI is presented to the network, each node
independently determines its relationship to the NI. The nodes act in
parallel, without information from any other nodes. This means they
can also act asynchronously. Nodes take different adaptive actions
based on their relationships to the NI. Each node, and by extension the
network, reconfigures without control external to the network, the
network is self-organizing.

After enough variables have been added so that the instance set is
consistent with the NI, the network can enter the Self-Deletion (SD)
phase. Nodes and variables that are no longer needed in discriminating
inputs are deleted. The network does not lose information during SD,
and will work properly without doing SD. Whereas consistency is
absolutely necessary, SD is optional. SD allows the network to free
nodes, an important factor when resources are limited (as in any
physical implementation).

Learning in ASOCS. What follows is a brief example of the learning
paradigm used in current ASOCS models. This is a brief overview of
the process, presented to help the reader understand the sections that
follow. This discussion deals only with instances and instance sets, not
with particular models or networks, because internal representations
differ from model to model. (It should be noted however, that as the
"instance set" changes, a network must reconfigure to reflect those
changes.) Assume the following instance set:

AB'->Z
Then, the instance AB'CD -> Z' is added. There would be a conflict
between the NI and the instance set when AB'.is matched To resolve
the conflict, variables C and D must be added to the instance set. When
this is completed, the instance set above will be replaced by the
following one:

AB'C' ->Z

ABD'->Z

AB'CD > Z'

During SD all, or only parts of some instances may be eliminated
from the instance set. Two simple cases are given to illustrate this (by
no means an exhaustive explanation). Suppose the following two
instances are contained in some instance set:

ABC ->7Z
ABCD ->Z

The second can be deleted because that case is covered by the first one.
Consider the instances:

AB'->Z

AB ->Z

These two can be replaced by:
A>Z
which covers the same cases with less variables (and instances).

Once consistency is established, the instance set fulfills the NI
asnd all parts of previous instances that do not contradict the NI. Once
SD is complete, the instance set may contain fewer variables and
instances than before. The NI presentation, comparison, adaptive
actions and possible self-deletions occur only once for each NI. No
iterative loops are necessary to obtain the correct instance set. This is
reflected in the networks in that no iterative training loops are necessary
to cause a network to learn properly.

Problem: Implementing Current Models in VLSI. The
basic structure of a node in current models has two parts: a two-input
logic gate capable of performing the 16 possible Boolean functions on
two variables, and a control unit that tells it which function it is to
perform at any given time. The node structure is illustrated in figure 1.
Current models use hierarchies of the two-input nodes to represent
instances in the current instance set. The problem that occurs is not a
problem inherent in using the hierarchical structures in these models.
Rather it is a problem of implementing the hierarchy in VLSI: the
technology does not fit the models.

Recall that instances can have positive or negative polarities.
Current models use two types of nodes to represent instances. The first
type is called a primitive node, or P-Node. These "building-block"
nodes have no real polarity, but compute their functions and feed their
output to other nodes Figure 2 shows a representation of a P-Node,
which has the function it computes written in, but no letter at the top
representing the output and polarity. (Representing the nodes this way
does not imply that this information is stored in the node itself--it may
not be.) The other type is called a discriminant node or D-Node.
Figure 2 also shows a D-Node, which has Z or Z' (Z bar) at the top,
indicating the output variable and its polarity in addition to showing the
function it computes In DNA, there are no "building-block" nodes.
Every node is a D-Node. This distinguishes it from all previous
models. Even though DNA is different, it still uses the ASOCS learning
paradigm. Hence the name "Discriminant-Node ASOCS", or DNA.

Fig. 1 - General Structure of ASOCS node

Both dynamic and static interconnect schemes [_2] are found
among current ASOCS models [3]. In considering a VLSI
implementation of these hierarchical models, a problem associated with
allocating unused nodes efficiently arises because the technology does
not fit the models. Figure 3 shows how the instance set:

ABC' ->Z
ABD' ->Z
AB'CD -> Z'

might be represented using a dynamic scheme, which uses a router to
change and set the links between nodes.

Implementing dynamic interconnect, routing through or around
other nodes will become a problem as the number of allocated nodes in
the network increases. A static interconnect is also preferred because it
would be cheaper and simpler to implement. Figure 4 shows the

13

zZ
ABCD ABCD
[[
P-Node D-Node

Fig. 2 - Representaion of an ASOCS P-Node and D-Node

instance set above represented using a static scheme. This one is a
Binary Decision Tree [11] in which the links between nodes are fixed.

The problem is that it is not possible to decide beforehand which
physical branch will require more nodes than the others, and thus which
nodes will remain unused. In both the dynamic and static cases,
allocating nodes from different parts of the network complicates the
logic of the network. Each node represents only a small piece of some
instance in the current instance set. Different pieces, i.e. nodes, have to
be logically ordered so that the instance set is fulfilled. The physical
position of a node in the network thus becomes important to the success
of the network. Where the unused nodes are has an impact on how
easily they can be allocated by a logical chain that may need them. It is
the hie-rarchy of nodes that causes this problem. Yet it is the very
nature of the computing nodes that makes the hierarchy necessary.

The basic structure of an ASOCS node was discussed earlier (see
Fig. 1). The fact that these computing nodes have only two inputs is
very important. The nodes are simple and computing their functions is
very fast. They fit naturally into a hierarchical scheme that allows for
bounded, O(log n) training and processing times. Because the nodes
are limited to two inputs, each node is limited in the amount of
information it can physically represent. As shown in figures 3 and 4, it
may take several nodes to represent an instance or an instance set.
(Refer again to figures 3 and 4. In these models each node computes
the AND of its inputs). Representations of instances are "built" by
feeding the output of some nodes into the inputs of others.

a |l

Fig. 3 - Dynamic Interconnect

Q—]

Dynamic
Router

Thus, it is clear that the problem with allocating unused nodes is tied to
the existence of the hierarchy of nodes, which exists in turn because of
the structure of the nodes. DNA's solution to the problem is to get rid
of the hierarchical structure. As will be seen in the next section, this
necessitates a change in the node structure.

DNA's Solution. DNA offers a solution to the problem of the
unused nodes. There is no need for direct communication between
nodes, so there is no hierarchical structure between nodes. This is
because each DNA node in the network represents a complete instance
in the current representation of the instance set. (For this reason DNA
and similar models that are currently being developed are called Node-
Per-Instance, or NPI models.) DNA nodes are capable of dynamically
changing to represent new and modified instances. DNA nodes contain
more information than nodes in other models. This is an important
difference from previous models which, as explained above, must use a
hierarchy of nodes to represent an instance. DNA nodes are logically
independent of one another, so nodes can be placed anywhere in the
network. Figure 5 shows the instance set of Figures 3 and 4 as it might
be represented in the DNA model:

Fig. 4 - Static Interconnect

OUTPUT

N
NI

free

Fig. 5 - DNA nodes are independent

INPUT

The bus represents the communication mechanism for broadcast of
inputs and collection of outputs. ("Bus" here describes the functionality
of the interconnect, but does not imply a specific implementation.)
DNA has the ability to use any node in the network easily to represent
instances, whereas this is not true of other models.

In order to get this flexibility and still maintain the advantages that
other models have, the DNA node structure must capture what the
hierarchy was doing in other models. There are a variety of ways to do
this. One is to build each node as a separate hierarchical structure.
Another is to time-multiplex input variables across a two-input logic gate
with some extra memory at the node. A third is to use a PLA-like
structure. How ever the node is actually implemented, it can logically
be thought of as a control unit and an n-input logic gate, shown in figure
6 (as compared to the two-input gate of Fig.1). This difference in nodes
(whether logical, physical or both) is the foundation of the differences
between the DNA model and models that use node hierarchies.

Logic Gate J

1?%»

I, I,

Fig. 6 - Logical Structure of DNA node

Processing and Learning in the DNA model. As in other
ASOCS models, DNA has two modes--processing and learning. In
processing mode, the inputs are broadcast to each of the nodes in
parallel. Each node, independent of all others, determines whether or
not it matches the inputs, and thus whether or not to put its outputs on
the output bus. Since the representation of a given instance set 1
consistent, the outputs will always be consistent [3]. In the case that the
input is matched by no node, two choices are available: either the
network can output a "don't know" state, or choose the output for the
instance that most closely matches the input. Which one is used is a
matter of preference in implementation, but does not affect the model.

Figure 5 uses a bus, which has linear propagation time, t0
connect the nodes. However, because they are logically independent of
one another, it does not matter how the nodes are arranged topologically
as long as they can receive input and send output. _The;eforc amesh, a
cube, a tree, or some other polynomial or logarithmic structure can
easily be used as an interconnect. It is important to note that while
signals may have to pass through nodes to get to other nodes, the

. latter's computation is not influenced by the former.

In learning mode, the network uses the same hardware as in
processing mode. However, the output must be broadcast to the nodes
as well as the input (i.e. a NI is presented to the network). As above,
each node independently determines how well it matches the
information. A node does not put its outputs on the output bus as it
might do above at this point. Instead, a node may change its function
based on the result. The goal of any change is to make the overall
function represented by the network consistent, so that there are no
conflicting outputs. Since each node has all the information it needs,
adaptation can take place asynchronously and concurrently among nodes
(as in the other models).

Conclusion. The development of the DNA model is an important step
from the abstract model toward the physical realization of an ASOCS
machine that can be used to solve problems. It is designed to better fit
the requirements for VLSI implementation than its predecessors. The
advantages and limitations of the model should be seen with this in
mind. Its advantages are:

1. It alleviates the unused node allocation problem that current
models have. Unused nodes are easier to use in DNA.

2. The network no longer depends on a logical hierarchy of
nodes for success. Physical location in the network is no longer
a factor.

3. As a result of #2, instances can be placed anywhere in the
network, and easily relocated without affecting the logic.

4. Different interconnect schemes may be used: dynamic, static,
trees, hypercubes, busses, etc. without affecting the success of
the network (although some topologies may be preferred over
others).

5. As a result of #4, it is still possible to obtain fast processing
and learning times as in other models, using the proper
interconnect.

Its limitation is:
1. The node will be slightly more complex than nodes in current
models, owing to the need for flexibility in what it represents.

Applications for ASOCS have been found in adaptive logic,
system fault management, robotics and dynamic control. As an ASOCS
nﬁodel, and potential implementation, DNA could be used for any of
these.

Current research focusses on five main areas:
1. VLSI implementation of DNA and other NPI models.

2. Use of a priority scheme with instances to limit the
growth of a network.

3. New learning algorithms that improve and extend

the power of current models.

4. Methods of extending functionality beyond Boolean to
higher-order functions and more complex data.

5. Finding new applications for DNA.

14

