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PREFACE

This book grew out of my habilitationsschrift at the University of Tiibingen in
2002. Currently, there is only one monograph dealing with the issue of fixed-
parameter algorithms: Rod G. Downey and Michael R. Fellows’ groundbreaking
monograph Parameterized Complezity (1999). Since then there have been numer-
ous new results in this field of exactly solving combinatorially hard problems.
Moreover, Downey and Fellows’ monograph focuses more on structural com-
plexity theory issues than on concrete algorithm design and analysis. By way
of contrast, the objective of this book is to focus on the algorithmic side of
parameterized complexity, giving a fresh view of this highly innovative field of
algorithmic research.
The book is divided into three parts:

1. a broad introduction that provides the general philosophy and motivation;

2. a part on algorithmic methods developed over the years in fixed-parameter
algorithmics, forming the core of the book; and

3. a final section discussing the essentials of parameterized hardness theory,
focusing first on W[1]-hardness, which parallels NP-hardness, then stating
some relations to polynomial-time approximation algorithms, and finishing
up with a list of selected case studies to show the wide range of applicability
of the methodology presented.

The book is intended for advanced students in computer science and related
fields as well as people generally working with algorithms for discrete problems.
It has particular relevance when studying ways to cope with computational in-
tractability as expressed by NP-hardness theory.

The reader is recommended to start with Part I, but Parts II and III do
not need to be read in the given order. Thus, from Chapter 7 on (with a few
exceptions) there are almost no restrictions concerning the chosen order. The
material presented can be used to form a course exclusively dedicated to the
topic of fixed-parameter algorithms as well as to provide supplementary material
for an advanced algorithms class.

We believe that the concept of fixed-parameter tractability is fundamental
for the algorithmics of computationally hard discrete problems. Due to the ubig-
uity of the proposed problem parameterization approach discussed here, fixed-
parameter algorithms should be seen as basic knowledge for every algorithm
designer. May this book help to spread this news.
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Part |

Foundations

A fixed-parameter algorithm is one that provides an optimal solution to a discrete
combinatorial problem. As a rule, such a problem is NP-hard and that is why
one must accept exponential running times for fixed-parameter algorithms. The
fundamental idea is to restrict the corresponding, seemingly unavoidable, “com-
binatorial explosion” that causes the exponential growth in the running time
of certain problem-specific parameters. It is hoped then that these parameters
(in the concrete application behind the problem under consideration) might take
only relatively “small” values, so that the exponential growth becomes affordable;
that is, the fixed-parameter algorithm efficiently solves the given “parameterized
problem”.

As an example of “parameterization”, consider the problem of placing as few
queens as possible to attack all the squares on a chessboard. There is a way to
place only five (which is optimal) queens on an 8 x 8 chessboard to do this. Here,
a natural parameter is the size k of the solution set we search for, that is, the set
of queens to be placed. Hence for 8 x 8 chessboards k = 5. What about general
n x n chessboards? Can we find a minimum solution efficiently?

A “more serious” example is the following. Assume that one wants to establish
transmission towers; the towers will be located on inhabited buildings, and each
such building must be reachable by at least one transmission tower. In addition,
assume that if a tower in location u can reach location v, then also one at v can
reach u. Then, given all pairs that can reach each other, how many transmitters
are needed to cover all the buildings? Again, a natural parameter to consider is
the number of transmitters needed. Thus the task is to find a small number of
transmission tower locations such that all buildings can be reached.

Both examples are instantiations of an NP-hard graph problem called DoM-
INATING SET:

Input: An undirected graph G = (V, F') and a nonnegative integer k.
Task: Find a subset of vertices S C V with k or fewer vertices such that
each vertex in V is contained in S or has at least one neighbor in 5.

An optimal solution to DOMINATING SET can be found in O(n**1) steps by
simply trying all size-k subsets of the vertex set V of size n. According to param-
eterized complexity theory, there is little hope of doing significantly better than



2 FOUNDATIONS

this. Fortunately, however, for restricted classes of graphs we can do better. For
instance, for planar graphs (that is, graphs that can be drawn in the plane with-
out edge crossings) DOMINATING SET can be solved in O(8% - n) time. Note that
DOMINATING SET remains NP-hard when restricted to planar graphs. Another
algorithm even finds a solution in O(c‘/E -n) time for some (larger) constant c.
This is what we understand by fixed-parameter algorithms—the superpolyno-
mial factor in the running time depends exclusively on the parameter k. Finally,
again in case of planar graphs, there are simple data reduction rules that—in
polynomial time—can shrink an original input graph with n vertices into a new
one with only O(k) vertices such that the search for an optimal solution can be
done within the size O(k) instance. All these results lead to the fundamental
conclusion that the combinatorial explosion can be confined to the parameter k
only, the central goal to be achieved by fixed-parameter algorithms. Generally
speaking, a fixed-parameter algorithm solves a problem with an input instance
of size n and a parameter k in

F(k) - oW

time for some computable function f depending solely on k. That is, for every
fixed parameter value it yields a solution in polynomial time and the degree of
the polynomial is independent from k.

Fixed-parameter algorithms have been scattered around the literature for
decades. As a method of algorithm design and analysis, parameterized complex-
ity was systematized by Rod G. Downey and Michael R. Fellows and some of their
co-authors during the 1990s. In particular, they developed a theory of parameter-
ized computational complexity, which is a strong mathematical tool for guiding
fixed-parameter algorithm design. In this book, we make use of parameterized
computational complexity theory to the extent that is necessary to learn about
the design and analysis of algorithms. More structural complexity-theoretic as-
pects are neglected in this work. Fixed-parameter algorithms are introduced as
a valuable alternative to complement other algorithmic approaches for attacking
hard combinatorial problems, such as approximation or heuristic algorithms.

Fixed-parameter algorithms adhere to a very natural concept when trying to
solve hard combinatorial problems. In the following we give a concise descrip-
tion of the very basic ideas and objectives behind this work and parameterized
complexity analysis. The focus of Part I is on encouraging the reader to adopt
a parameterized view of the study of computationally hard problems. Besides
simple motivating examples and the presentation of the elementary concepts
needed throughout the book, the breadth of the parameterized complexity ap-
proach is illustrated by means of an extensive discussion of the NP-complete
graph problem VERTEX COVER. Having dealt with this perhaps most popular
parameterized problem, we finally move on and finish with a general discussion
on the “art” of parameterizing problems.



