wiive ERREF O M BERIEAR \ Microsoft

NETEHRIGIZITEZ

Microsoft .NET

Architecting Applications for the Enterprise

NETEFFRH 2 S

(HEChi)

Microsoft - Dino Esposito e
2> Most Valuable [f%] P

Professional " Andrea Saltarello

” Amazon2 hEBH
™ BNESEE, ST SEAERTY
DOYRITERIESCE
m R ERI R A B S
Z AL A

f POSTS & TELECOM PRESS

\

st

S

Microsoft .NET

Architecting Applications for the Enterprise

NETHIFRZ I

EREMGBE (CIP) #iE

NET #{4:42#] 2 3 = Microsoft NET: Architectin
Applications for the Enterprise: 3£3C / () J‘ﬁé%’%
H V46 (Esposito, D.), (F) E/RIEEF (Saltare-
llo,A.) # —Jtxl: ARHRR AL, 2009.9

(B RBRERITASED

ISBN 978-7-115-20018-1

LN 1. Q@ 1. HIHUIN - Bt -
#3r V. TP393.09

rh [A B B CIPBEE T (2009) 281041995

nERE

AW E B LEA SERMEFF R LK ASP NET ¥K. EEFFINZTFE, ABRBREEEM. &’
TR BB E . S RHENE UML. BHEM R F S WBAREMA BRI RR
it. ABFFCHEY, ESEBSE ERTEMERETTEATREINESE, FER TIMMERS S i
WA . Bt T RS, BT i i i RN E A Rk A A B NET BB .

AABESHER NET FE AR B,

B R AT
NETE 4 3RM2Z % (3T)

* E [&] Dino Esposito Andrea Saltarello
TG S

o A\ RHgE H R AR AT LR R X S 3145
k%% 100061 PR 315@ptpress.com.ch
st http://www.ptpress.com.cn
BT & IE K ENRIA PR 2 5] BRI

& JiA: 800X1000 1/16

Epgk: 28.5
W 54TFF 20094E9 A% 1R
Ep¥: 1-2 000 20094F 9 HALEES 1 REIR

EERARIZRICES EF: 01-2009-37975
ISBN 978-7-115-20018-1/TP
' EHr: 69.007C
EEREAL: (010051095186 EDEFEMMALL . (010067129223
R#BNEHL: (01067171154

hk # = B

© 2009 by Microsoft Corporation. All rights reserved. Original edition, entitled Microsoft .NET:
Architecting Applications for the Enterprise by Andrea Saltarello and Dino Esposito, ISBN
978-0-7356-2609-6, published by Microsoft Press in 2009.

This reprint edition is published with the permission of the Syndicate of the Microsoft Press.

Copyright © 2009 by Andrea Saltarello and Dino Esposito.

THIS EDITION IS LICENSED FOR DISTRIBUTION AND SALE IN THE PEOPLE’S
REPUBLIC OF CHINA ONLY, EXCLUDING HONG KONG, MACAO AND TAIWAN, AND MAY
NOT BE DISTRIBUTED AND SOLD ELSEWHERE.

A0 5 5L P R R HH
20 F5 35 S EAR HT K HH BSAL BN ERCHS P BRI R . 28 B S5 T T, /8L
FEAT 7 R IR A .
VERRA R RAE N RISRIE (B WIS RIATBR M &K IR A 858 AT
RRAR BT, AL

To Silvia, Francesco, and Michela who wait for me and keep me busy.

But I'm happy only when I'm busy.

—Dino

To Mum and Depeche Mode.

—Andrea

"Any sufficiently advanced technology is indistinguishable from magic.”

—Arthur C. Clarke

Acknowledgments

For at least two years, Andrea didn’t miss any opportunity to remind Dino about the
importance of a .NET-focused architecture book covering the horizontal slice of a muititier
enterprise system. And for two years Dino strung Andrea along with generic promises, but
absolutely no commitment. Then, suddenly, he saw the light. During a routine chat over
Messenger, we found out that we repeatedly made similar statements about architecture—
too many to mark it down as a simple coincidence. So we started thinking, and this time
seriously, about this book project. But we needed a team of people to do it right, and they

were very good people, indeed.

Ben Ryan was sneakily convinced to support the project on a colorful Las Vegas night, during
an ethnic dinner at which we watched waiters coming up from and going down to the wine-
cellar in transparent elevators.

Lynn Finnel just didn’t want to let Dino walk alone in this key project after brilliantly
coordinating at least five book projects in the past.

Kenn Scribner is now Dino’s official book alter ego. Kenn started working with Dino on
books back in 1998 in the age of COM and the Active Template Library. How is it possible
that a book with Dino’s name on the cover isn't reviewed and inspired (and fixed) by Kenn's
unique and broad perspective on the world of software? The extent to which Kenn can be
helpful is just beyond human imagination.

Roger LeBlanc joined the team to make sure that all these geeks sitting together at the
same virtual desktop could still communicate using true English syntax and semantics.

We owe you all the (non-rhetorically) monumental “Thank you" for being so kind, patient,
and accurate.

Only two authors and a small team for such a great book? Well, not exactly. Along the project
lifetime, we had the pleasure to weicome aboard a good ensemble of people who helped
out in some way. And we want to spend a word or two about each of them here.

Raffaele Rialdi suggested and reviewed our section in Chapter 3 about design for security.
Roy Osherove was nice enough to share his enormous experience with testing and testing
tools. Marco Abis of ThoughtWorks had only nice words for the project and encouraged us
to make it happen. Alex Homer of Microsoft helped with Unity and Enterprise Library. And
the whole team at Managed Design (our Italian company) contributed tips and ideas—special
thanks go to Roberto Messora.

It's really been a pleasurel

—Andrea and Dino

2 Acknowledgments

Dino’s Credits

This is the first book | have co-authored in 8 or

9 years. | think the last was a multi-author book on
data access involving COM and OLE DB. In the past,
co-authoring a book for me meant accepting to
write a few chapters on specific topics, while having
only a faint idea of what was coming before and
after my chapters.

This book is different.

This book has really been written by a virtual
author: a human with the hands of Dino and the
experience of Andrea. | actually did most of the
writing, but Andrea literally put concepts and
ideas into my keyboard. If it were a song, it would be described as lyrics by Dino and music

by Andrea.

This book wouldn't exist, or it wouldn't be nearly as valuable, without Andrea. Andrea has
been my personal Google for a few months—the engine to search when | need to understand
certain principles and design issues. The nicest part of the story is that | almost always asked
about things | (thought I) knew enough about. My “enough” was probably really enough to
be a very good architect in real life. But Andrea gave me a new and broader perspective on
virtually everything we covered in the book—ISO standards, UML, design principles, patterns,
the user interface, business logic, services, and persistence. ['ve been the first hungry reader
of this book. And I've been the first to learn a lot.

It was so fun that | spent the whole summer on it. And in Italy, the summer is a serious matter.
I smile when | get some proposals for consulting or training in mid-August. There's no way
| can even vaguely hint to my wife about accepting them.

So, on many days, | reached 7 p.m. so cloudy minded that running, running, and running—
which was more soothing than my favorite pastime of trying to catch up to and hit a bouncing
tennis ball—was the only way to recover a decent state of mind. On other days, my friends

at Tennis Club Monterotondo helped a lot by just throwing at me tons of forehands and
passing shots. One of them, Fabrizio-—a guy who played Boris Becker and Stefan Edberg

and who now wastes his time with my hopeless backhand slice—has been my instructor for

a while. He also tried to learn some basic concepts of Web programming during what often
became long conversations while changing ends of the court. But just as | keep on twirling

the wrist during the execution of a backhand slice, he still keeps on missing the whole point of
HTTP cookies.

My friend Antonio deserves a very special mention for organizing a wonderful and regenerative
vacation in the deep blue sea of Sardinia, and for being kind enough to lose all the matches we

Acknowledgments 3

played. It was just the right medicine to rejuvenate a fatigued spirit after a tough book project.
He tried to initiate me into the sport of diving, too, but all | could do was snorkel while the kids

got their Scuba Diver certification.

My kids, Francesco and Michela, grow taller with every book | write, and not because

they just hop on the entire pile of dad’s books. They're now 10 and 7, and Michela was just
a newborn baby when | started working on my first .NET book for Microsoft Press. I really
feel a strong emotion when attendees of conferences worldwide come by and ask about my
kids—loyal readers of my books have been seeing their pictures for years now.

For me, this book is not like most of the others that | have written—and | do write about
one book per year. This book marks a watershed, both personal and professional. | never
expressed its importance in this way with Silvia, but she understood it anyway and
supported me silently and effectively. And lovingly. And with great food, indeed!

Life is good.

—Dino

Andrea’s Credits

This is my first book. More precisely, this is my first serious publication. The seeds for this
book were sowed in November 2004 when a rockstar like Dino approached me and proposed

that we work together.

We started a successful business partnership, and we delivered a number of classes and some
articles—including one for MSDN Magazine—and took a number of industry projects home
to ensure our customers were happy.

In all these years, Dino impressed me especially with his unique ability of going straight to the
point, and being a terrifically quick learner of the fundamentals of any topics we touched on.
More, he also showed an unparalleled ability to express any concept precisely and concisely.
Countless times during this book project, | found my own wording hard to read, nebulous,
and even cryptic. A few days later, instead, massaged by Dino, the same text looked to me
magically fluent and perfectly understandable—;just like any technical text should always be.

(OK, I admit. Sometimes [thought “I hate this man,” but it was an unusual and unconfessed
way to look up to Dino with admiration.)

More than everything else, what initially was a simple although successful professional
collaboration turned into friendship. This book, therefore, is not a finish line. It is, instead, the
starting point of a common path. I really don't know either where we're going or how long it
will take, but I'm going to be happy to take the walk.

Acknowledgments

Being a full-time consultant, it was very hard for me to set aside the time needed for writing
this book. So | had to start living a double life, resorting to writing in what you would define
as “spare time": evenings and weekends, and suddenly the summer also became standard
working time. Every now and then, it has been a little frustrating, but | found new strength
and inspiration due to the love and support | was blessed with by my guardian angels: my
mom and Laura. I'd like to say to them that words cannot express how precious your caring
is. | love you.

Now, this is fun.

—Andrea

Introduction

Good judgment comes from experience, and experience comes from bad judgment.
—Fred Brooks

Every time we are engaged on a software project, we create a solution. We call the process
architecting, and the resulting concrete artifact is the architecture. Architecture can be implicit

or explicit.

An implicit architecture is the design of the solution we create mentally and persist on a bunch
of Microsoft Office Word documents, when not on handwritten notes. An implicit architecture
is the fruit of hands-on experience, the reuse of tricks learned while working on similar projects,
and an inherent ability to form abstract concepts and factor them into the project at hand. If
you're an expert artisan, you don't need complex drawings and measurements to build a fence
or a bed for your dog; you can implicitly architect it in a few moments. You just proceed and
easily make the correct decision at each crossroad. When you come to an end, it's fine. All's well

that ends well.

An explicit architecture is necessary when the stakeholder concerns are too complex and
sophisticated to be handled based only on experience and mental processes. In this case,
you need vision, you need guidance, and you need to apply patterns and practices that, by
design, take you where you need to be.

What Is Architecture?

The word architecture has widespread use in a variety of contexts. You can get a definition for
it from the Oxford English Dictionary or, as far as software is concerned, from the American
National Standards Institute/Institute of Electrical and Electronics Engineers (ANSI/IEEE)
library of standards. In both cases, the definition of architecture revolves around planning,
designing, and constructing something—>be it a building or a software program. Software
architecture is the concrete artifact that solves specific stakeholder concerns—read, specific

user requirements.

An architecture doesn't exist outside of a context. To design a software system, you need to
understand how the final system relates to, and is embedded into, the hosting environment.
As a software architect, you can't ignore technologies and development techniques for the
environment of choice—for this book, the .NET platform.

Again, what is architecture?

We like to summarize it as the art of making hard-to-change decisions correctly. The
architecture is the skeleton of a system, the set of pillars that sustain the whole construction.

Introduction

The architect is responsible for the architecture. The architect’s job is multifaceted. She has
to acknowledge requirements, design the system, ensure the implementation matches the
expectation, and overall ensure that users get what they really need—which is not necessarily

what they initially accept and pay for.

Software architecture has some preconditions—that is, design principles—and one post
condition—an implemented system that produces expected results. Subsequently, this book
is divided into two parts: principles and the design of the system.

The first part focuses on the role of the architect: what he does, who he interacts with and
who he reports to. The architect is primarily responsible for acknowledging the requirements,
designing the system, and communicating that design to the development team. The
communication often is based on Unified Modeling Language (UML) sketches; less often,
it's based on UML blueprints. The architect applies general software engineering principles
first, and object-oriented design principles later, to break down the system into smaller
and smaller pieces in an attempt to separate what is architecture (points that are hard to
change) and what is not. One of the purposes of object-oriented design is to make your
code easy to maintain and evolve—and easy to read and understand. The architect knows
that maintainability, security, and testability need to be built into the system right from the
beginning, and so he does that.

The second part of the book focuses on the layers that form a typical enterprise system—the
presentation layer, business layer, and data access layer. The book discusses design patterns
for the various layers—including Domain Model, Model-View-Presenter, and Service Layer—
and arguments about the evolution of technologies and summaries of the new wave of tools
that have become a common presence in software projects—O/R mappers and dependency
injection containers.

So, in the end, what's this book about?

It's about the things you need to do and know to serve your customers in the best possible
way as far as the .NET platform is concerned. Patterns, principles, and techniques described
in the book are valid in general and are not specific to particularly complex line-of-business
applications. A good software architecture helps in controlling the complexity of the project.
And controlling the complexity and favoring maintainability are the sharpest tools we have
to fight the canonical Murphy’s Law of technology: “Nothing ever gets built on schedule or
within budget.”

The expert is the one who knows how to handle complexity, not the one who simply predicts
the job will take the longest and cost the most—just to paraphrase yet another popular
Murphy’s Law.

Introduction 3

Who This Book Is For

In the previous section, we repeatedly mentioned architects. So are software architects the
ideal target audience for this book? Architects and lead developers in particular are the
target audience, but any developers of any type of .NET applications likely will find this book
beneficial. Everyone who wants to be an architect may find this book helpful and worth

the cost.

What about prerequisites?

Strong object-oriented programming skills are a requirement, as well as having a good
foundation of knowledge of the .NET platform and data access techniques. We point out

a lot of design patterns, but we explain all of them in detail in nonacademic language with
no weird formalisms. Finally, we put in a lot of effort into making this book read well. It's ‘
not a book about abstract design concepts; it is not a classic architecture book either, full of
cross-references and fancy strings in square brackets that hyperlink to some old paper listed
in the bibliography available at the end of the book.

This is (hopefully) a book you'll want to read from cover to cover, and maybe more than
once—not a book to keep stored on a shelf for future reference. We don't expect readers to
pick up this book at crunch time to find out how to use a given pattern. Instead, our ultimate
goal is transferring some valuable knowledge that enables you to know what to do at any
point. In a certain way, we would happy if, thanks to this book, you could do more implicit
architecture design on your own.

Companion Content

In the book, we present several code snippets and discuss sample applications, but with the
primary purpose of illustrating principles and techniques for readers to apply in their own
projects. In a certain way, we tried to teach fishing, but we don't provide some sample fish to
take home. However, there's a CodePlex project that we want to point out to you. You find it
at http.//www.codeplex.com/nsk.

This book also features a companion Web site where you can also find the CodePlex project.
You can download it from the companion site at this address: http;//www.microsoft.com/

mspress/companion/9780735626096.

The Northwind Starter Kit (NSK) is a set of Microsoft Visual Studio 2008 projects that form a
multitier .NET-based system. Produced by Managed Design (http.//www.manageddesign.it),
NSK is a reference application that illustrates most of the principles and patterns we discuss
in the book. Many of the code snippets in the book come directly from some of the projects
in the NSK solution. If you're engaged in the design and implementation of a .NET layered
application, NSK can serve as a sort of blueprint for the architecture.

4 Introduction

Refer to the Managed Design Web site for the latest builds and full source code. For an
overview of the reference application, have a look at the Appendix, “The Northwind Starter

Kit," in this book.

Hardware and Software Requirements

You'll need the following hardware and software to work with the companion content
included with this book:

Microsoft Windows Vista Home Premium Edition, Windows Vista Business Edition, or
Windows Vista Ultimate Edition

Microsoft Visual Studio 2008 Standard Edition, Visual Studio 2008 Enterprise Edition,
or Microsoft Visual C# 2008 Express Edition and Microsoft Visual Web Developer 2008

Express Edition
Microsoft SQL Server 2005 Express Edition, Service Pack 2

The Northwind database of Microsoft SQL Server 2000 is used by the Northwind
Starter Kit to demonstrate data-access techniques. You can obtain the Northwind
database from the Microsoft Download Center (http://www.microsoft.com/downloads/
details.aspx?FamilylD=06616212-0356-46A0-8DA2-EEBC53A680348&displaylang=en).

1.6 GHz Pentium lll+ processor, or faster

1 GB of available, physical RAM.

Video (800 by 600 or higher resolution) monitor with at least 256 colors.
CD-ROM or DVD-ROM drive.

Microsoft mouse or compatible painting device

Find Additional Content Online

As new or updated material becomes available that complements this book, it will be posted
online on the Microsoft Press Online Developer Tools Web site. The type of material you
might find includes updates to book content, articles, links to companion content, errata,
sample chapters, and more. This Web site is available at www.microsoft.com/learning/books/
online/developer and is updated periodically.

Support for This Book

Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD. As corrections or changes are collected, they will be added to a Microsoft
Knowledge Base article.

Introduction 5

Microsoft Press provides support for books and companion CDs at the following Web site:

http//www.microsoft.com/learning/support/books

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content, or
questions that are not answered by visiting the sites above, please send them to Microsoft

Press via e-mail to
mspinput@microsoft.com
Or via postal mail to

Microsoft Press
Attn: Microsoft .NET: Architecting Applications for the Enterprise Editor

One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above
addresses.

Table of Contents

Part1 Principles

1 Architects and Architecture Today.......................... 3
' What's a Software Architecture, Anyway?c.cooeuievnenn... 4
Applying Architectural Principles to Software 4

What's Architecture and What's Not 8

Architecture Is About Decisians oot 10

Requirements and Quality of Software 12

Wha's the Architect, Anyway? 17

An Architect’s Responsibilities. 17

How Many Types of Architects Do You Know? 20

Common Misconcéptions About Architects.............. ... 21

Overview of the Software DevelopmentProcess. 24

The Software LifeCycle........................... e 24

Models for Software Development.............cooiiiiii i, 26

summary e 30

Murphy's Laws of the Chapter o i... 30

2 UMLEssentials............................ e 31
UMLataGlance.o e e e 32
Motivation for and History of Modeling Languages 33
UMLModesand Usage.ooviiiiiiiiinniin e, 36

UML DIEGramsot it e e e e i e 41

Use-Case Diagrams ettt 43

Class Diagramst it i e e e 47

Sequence Diagrams. e 53

2

Table of Contents

SUMMAIY . oottt i e e ia et e 61
Murphy’s Laws of the Chapter i i, 61
3 Design PrinciplesandPatterns. 63
Basic Design Principlesco i e 63
For What the Alarm Bell Should Ring............ ..o iviiions., 65
Structured DesignL R 66
Separation of CoNCerNS.outiiir it e 70
Object-Oriented Designottt e e e 73
BasicOOD Principles.t e 73
Advanced Principles 80
From Principles to Patterns.c i i 85
What's a Pattern, Anyway?.oiieiiiiini e i .86
Patternsvs. ldioms. e 92
Dependency Injection......... i i 95
Applying Requirements by Design................... e 97
Testability 97
UMY - o 108
From Objects to Aspects. ... 116
Aspect-Oriented Programming................. coouin... 116
AOPIN ACHION e i it i e 120
U I Y L oottt it e e e 124
Murphy’s Laws of theChapter. 125
Part I Design of the System
4 TheBusinesslayer...........c.uuiiiiiiiniininnnnnnnn.. 129
What's the Business Logic Layer, Anyway?.cccouun... 130
Dissecting the Business Layercoviviiionn... 130 .
Where Would You Fitthe BLL?o .. 134
Businessand Otherlayersl s, 138
Patterns for Creating the Business Layer 141
The Transaction Script Pattern.o i 145
Generalitiesof the TSPattern 145
The Patternin Action i, 149
The Table Module Patternoo.veuuieiniaaann., 154
Generalities of the TM Pattern. 155

The TM Pattern in ACtiON o et 159

Table of Contents

The Active Record Pattern i, 165
Generalities of the AR Pattern............... ..ot 166

The AR Patternin Action i 168

The Domain Model Patternot iiiiiii i 176
Generalitiesofthe DM Patternot iiiiinnnnn. 177

The DM Pattern in Action. e 181

R] 3L 4 - T/ O 191
Murphy's Laws of the Chapter.......... ... i 192
5 TheServicelayercc...... e 193
What's the Service Layer, Anyway?c.iiiiiri i, 194
Responsibilities of the Service Layer. 195
What's a Service, Anyway?t e 198
Servicesinthe Service Layer it i, 201

The Service Layer PatterninAction 205
Generalities of the Service Layer Pattern.......................... 205

The Service Layer Patternin Action 208
Related Patterns, e 213
The Remote Facade Pattern. e 213

The Data Transfer Object Pattern.ocoievvno. ... 216

The Adapter Patterncoiiriiiinii e, 218
DTOvs. Assembly........................ S 221
Service-Oriented Architecture. 229
Tenets of SOA 230
What SOA IS NOt i e 232
SOAandthe Service Layer............0 oo, 234

The Very Special Case of Rich Web FrontEnds. 237
Refactoring the Service Layer e e e, 238
Designing an AJAX ServiceLayerccoociiiinennn ... 242
Securing the AJAX Servicelayer.ciiiirieunni.. 246
SUMIMALY . 250
Murphy's Laws of the Chapter............. 250
6 TheDataAccessLlayer........covivirieiriinnnnnnnnnnn.. 251
What's the Data Access Layer, Anyway?. R 251
Functional Requirements of the Data Access Layer................. 252
Responsibilities of the Data Access Layer 254

The Data Access Layer and Other Layers. 260

