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Introduction

Good judgment comes from experience, and experience comes from bad judgment.
—Fred Brooks

Every time we are engaged on a software project, we create a solution. We call the process
architecting, and the resulting concrete artifact is the architecture. Architecture can be implicit

or explicit.

An implicit architecture is the design of the solution we create mentally and persist on a bunch
of Microsoft Office Word documents, when not on handwritten notes. An implicit architecture
is the fruit of hands-on experience, the reuse of tricks learned while working on similar projects,
and an inherent ability to form abstract concepts and factor them into the project at hand. If
you're an expert artisan, you don't need complex drawings and measurements to build a fence
or a bed for your dog; you can implicitly architect it in a few moments. You just proceed and
easily make the correct decision at each crossroad. When you come to an end, it's fine. All's well

that ends well.

An explicit architecture is necessary when the stakeholder concerns are too complex and
sophisticated to be handled based only on experience and mental processes. In this case,
you need vision, you need guidance, and you need to apply patterns and practices that, by
design, take you where you need to be.

What Is Architecture?

The word architecture has widespread use in a variety of contexts. You can get a definition for
it from the Oxford English Dictionary or, as far as software is concerned, from the American
National Standards Institute/Institute of Electrical and Electronics Engineers (ANSI/IEEE)
library of standards. In both cases, the definition of architecture revolves around planning,
designing, and constructing something—>be it a building or a software program. Software
architecture is the concrete artifact that solves specific stakeholder concerns—read, specific

user requirements.

An architecture doesn't exist outside of a context. To design a software system, you need to
understand how the final system relates to, and is embedded into, the hosting environment.
As a software architect, you can't ignore technologies and development techniques for the
environment of choice—for this book, the .NET platform.

Again, what is architecture?

We like to summarize it as the art of making hard-to-change decisions correctly. The
architecture is the skeleton of a system, the set of pillars that sustain the whole construction.
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The architect is responsible for the architecture. The architect’s job is multifaceted. She has
to acknowledge requirements, design the system, ensure the implementation matches the
expectation, and overall ensure that users get what they really need—which is not necessarily

what they initially accept and pay for.

Software architecture has some preconditions—that is, design principles—and one post
condition—an implemented system that produces expected results. Subsequently, this book
is divided into two parts: principles and the design of the system.

The first part focuses on the role of the architect: what he does, who he interacts with and
who he reports to. The architect is primarily responsible for acknowledging the requirements,
designing the system, and communicating that design to the development team. The
communication often is based on Unified Modeling Language (UML) sketches; less often,
it's based on UML blueprints. The architect applies general software engineering principles
first, and object-oriented design principles later, to break down the system into smaller
and smaller pieces in an attempt to separate what is architecture (points that are hard to
change) and what is not. One of the purposes of object-oriented design is to make your
code easy to maintain and evolve—and easy to read and understand. The architect knows
that maintainability, security, and testability need to be built into the system right from the
beginning, and so he does that.

The second part of the book focuses on the layers that form a typical enterprise system—the
presentation layer, business layer, and data access layer. The book discusses design patterns
for the various layers—including Domain Model, Model-View-Presenter, and Service Layer—
and arguments about the evolution of technologies and summaries of the new wave of tools
that have become a common presence in software projects—O/R mappers and dependency
injection containers.

So, in the end, what's this book about?

It's about the things you need to do and know to serve your customers in the best possible
way as far as the .NET platform is concerned. Patterns, principles, and techniques described
in the book are valid in general and are not specific to particularly complex line-of-business
applications. A good software architecture helps in controlling the complexity of the project.
And controlling the complexity and favoring maintainability are the sharpest tools we have
to fight the canonical Murphy’s Law of technology: “Nothing ever gets built on schedule or
within budget.”

The expert is the one who knows how to handle complexity, not the one who simply predicts
the job will take the longest and cost the most—just to paraphrase yet another popular
Murphy’s Law.
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Who This Book Is For

In the previous section, we repeatedly mentioned architects. So are software architects the
ideal target audience for this book? Architects and lead developers in particular are the
target audience, but any developers of any type of .NET applications likely will find this book
beneficial. Everyone who wants to be an architect may find this book helpful and worth

the cost.

What about prerequisites?

Strong object-oriented programming skills are a requirement, as well as having a good
foundation of knowledge of the .NET platform and data access techniques. We point out

a lot of design patterns, but we explain all of them in detail in nonacademic language with
no weird formalisms. Finally, we put in a lot of effort into making this book read well. It's ‘
not a book about abstract design concepts; it is not a classic architecture book either, full of
cross-references and fancy strings in square brackets that hyperlink to some old paper listed
in the bibliography available at the end of the book.

This is (hopefully) a book you'll want to read from cover to cover, and maybe more than
once—not a book to keep stored on a shelf for future reference. We don't expect readers to
pick up this book at crunch time to find out how to use a given pattern. Instead, our ultimate
goal is transferring some valuable knowledge that enables you to know what to do at any
point. In a certain way, we would happy if, thanks to this book, you could do more implicit
architecture design on your own.

Companion Content

In the book, we present several code snippets and discuss sample applications, but with the
primary purpose of illustrating principles and techniques for readers to apply in their own
projects. In a certain way, we tried to teach fishing, but we don't provide some sample fish to
take home. However, there's a CodePlex project that we want to point out to you. You find it
at http.//www.codeplex.com/nsk.

This book also features a companion Web site where you can also find the CodePlex project.
You can download it from the companion site at this address: http;//www.microsoft.com/

mspress/companion/9780735626096.

The Northwind Starter Kit (NSK) is a set of Microsoft Visual Studio 2008 projects that form a
multitier .NET-based system. Produced by Managed Design (http.//www.manageddesign.it),
NSK is a reference application that illustrates most of the principles and patterns we discuss
in the book. Many of the code snippets in the book come directly from some of the projects
in the NSK solution. If you're engaged in the design and implementation of a .NET layered
application, NSK can serve as a sort of blueprint for the architecture.
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Refer to the Managed Design Web site for the latest builds and full source code. For an
overview of the reference application, have a look at the Appendix, “The Northwind Starter

Kit," in this book.

Hardware and Software Requirements

You'll need the following hardware and software to work with the companion content
included with this book:

Microsoft Windows Vista Home Premium Edition, Windows Vista Business Edition, or
Windows Vista Ultimate Edition

Microsoft Visual Studio 2008 Standard Edition, Visual Studio 2008 Enterprise Edition,
or Microsoft Visual C# 2008 Express Edition and Microsoft Visual Web Developer 2008

Express Edition
Microsoft SQL Server 2005 Express Edition, Service Pack 2

The Northwind database of Microsoft SQL Server 2000 is used by the Northwind
Starter Kit to demonstrate data-access techniques. You can obtain the Northwind
database from the Microsoft Download Center (http://www.microsoft.com/downloads/
details.aspx?FamilylD=06616212-0356-46A0-8DA2-EEBC53A680348&displaylang=en).

1.6 GHz Pentium lll+ processor, or faster

1 GB of available, physical RAM.

Video (800 by 600 or higher resolution) monitor with at least 256 colors.
CD-ROM or DVD-ROM drive.

Microsoft mouse or compatible painting device

Find Additional Content Online

As new or updated material becomes available that complements this book, it will be posted
online on the Microsoft Press Online Developer Tools Web site. The type of material you
might find includes updates to book content, articles, links to companion content, errata,
sample chapters, and more. This Web site is available at www.microsoft.com/learning/books/
online/developer and is updated periodically.

Support for This Book

Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD. As corrections or changes are collected, they will be added to a Microsoft
Knowledge Base article.
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Microsoft Press provides support for books and companion CDs at the following Web site:

http//www.microsoft.com/learning/support/books

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content, or
questions that are not answered by visiting the sites above, please send them to Microsoft

Press via e-mail to
mspinput@microsoft.com
Or via postal mail to

Microsoft Press
Attn: Microsoft .NET: Architecting Applications for the Enterprise Editor

One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above
addresses.
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